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Abstract 
 

        The quantitative determination of the variable density contrasts and position of 
contact surfaces for an intermediate horizontal layer in the sub-surface has been 
demonstrated. In particular a sub-surface dipping dike model with apriori depth-
dependent density contrasts was adopted as a forward model to project synthetic gravity 
anomaly effect onto the Earth surface. The sub-surface location and density contrasts of 
the dipping dike in a series of the intermediate horizontal layers have been recovered by 
means of inversion analysis. Density contrasts errors of less than 8.0 percent were 
realized to a depth of 2.00 km in the sub-surface for a maximum gravity anomaly effect 
of 10.0 mGals, which is better comparison to sub-surface constant density models. 
Subsequently by the direct relationship of the positions of contact surfaces and disturbing 
masses in an intermediate horizontal layer the former have been determined 
simultaneously with the respective density contrasts. 
 
          Further, since geophysical fields observations are not error-free, the possible height 
errors and the height error effects in the determination of differential density contrasts 
and positions of contacts surface have too been investigated. Height errors and error 
effects in the disturbing masses considered were due to (1) deviations due to inaccurate 
average depth of layer, (2) distortions due to assigned layer thickness or assumed density, 
(3) top surface only being identical to observations surface and (4) layer being 
approximated as surface covered with a loaded mass. It has been clearly established that 
once errors and/or error effects are known the exact or correct density contrasts and/or 
positions of contact surfaces in a horizontal intermediate layer can be obtained or 
reviewed for a particular sub-surface. 
  
            For meaningful geological and/or geological interpretations the height error limits 
on height measurements for an intermediate horizontal layer were too considered based 
on the common geological materials of sub-surface dipping dike model. Finally to 
demonstrate the efficacy of the inverse modeling, the inversion analysis was successfully 
applied to a real case study. A micro-gravimetry and/or localized structures in the 
Central Ranges of Chubu District – Japan was chosen. In utilizing residual gravity 
anomaly, an arbitrary height error of +5.0 m on an intermediate horizontal layer of 
thickness 0.300 km had an average density contrasts error effect of 10.0 mg/cm3 to a 
maximum depth of 0.700 km. The case of thickness of the layer being had a much less 
error effect compared to the other height errors. Height error limits depends mostly on 
the actual need or purpose of the resulting density contrasts in the horizontal layer. 
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Chapter 1 
 
A journey of thousand miles begins with the first step. 

 - Chinese Proverb. 
 

Up to a point is better to let snags [bugs] be there  
Than to spend such time in design that there are none (how many decades would this take?)  

- A. N. Turing – Proposals for ACE (1945). 
 

Any and every idea a person has is worthless as long as he keeps it in his brain. 
 It is like a piece of rock from which a diamond can be ground if it is put to a ground stone  

… Such ground stones are the brains of other men.  
 - Thomas Bata (Czech Founder of Bata Shoe Company). 

1 Introduction 
 
1.1 Statement of the Problem 
 
          The sub-surface density variation with respect to depth is a well-recognized 
geophysical phenomenon. The cognizance of the density variations typically aids in the 
mapping of the local lateral heterogeneities in the Earth’s structure and the composition 
for numerous geophysical, geological and exploration applications. Further, it aids in the 
understanding the processes-taking place within the Earth, which include such 
phenomena as sub-surface anticlines and synclines; presence of faults and dikes, lateral 
and/or vertical magma flows during Earthquakes and/or volcanoes etc. Almost all 
geophysical inferences about the Earth’s structure and the physical processes going on 
inside the Earth, like, for example, core-mantle interaction, thermal convection, 
earthquake raptures to name but a few are carried out on the base of the surface made 
measurements.  
 

The meaningful geological and/or geophysical interpretation for the above-
mentioned purposes therefore depends on the ability to distinctly differentiate the 
variable densities of various sub-surface geological materials. Density variations are also 
useful in providing indirect clues to the presence of economically useful deposits e.g. 
minerals, petroleum and gas etc. Besides, the sub-surface lateral variations of density or 
mass distributions are associated with changes in the potential fields e.g. gravity 
perturbations including latitudinal variation of gravity of the Earth and Earth tides which 
have links to the Earth’s interior. It is therefore vital to consider variable density and/or 
density contrasts rather than constant density when interpreting geophysical potential 
fields.  

 
Problems utilizing constant densities have theoretically and practically been 

investigated, however the disturbing masses of variable density distributions for both 
theoretical and practical cases are still in the process of development.  Studies on the two-
dimensional gravity modeling with variable density contrasts have attracted a lot of 
interest for some time now. Rao [1986a; 1986b; 1990] has developed closed-form 
expressions for computing gravity from two-dimensional simple-shaped bodies such as 
rectangular cylinders, inclined faults and asymmetrical trapezoids, the densities of which 
follow quadratic polynomial functions of depth. Cordell [1973] shows an approximate 

 1



method to compute the gravity effect caused by a two-dimensional vertical prism with 
density contrast varying exponentially with depth, while Murthy and Rao [1979] studied 
gravity anomalies of two-dimensional arbitrary cross-section with linear density 
variations with depth.  
 
          Further, the problems of inverse theory or downward continuation of potential 
fields into arbitrary regions of the lower half-space on both two-dimensional (2D) and 
three-dimensional (3D) formulations have extensively been treated in geophysical 
literature. Research works of Savinsky et al.,   [1981] on downward continuation into the 
lower half-space to determine to the disturbing masses in a horizontal layer are 
particularly notable. In Savinsky [1984] the entire lower half-space is considered for the 
determination of the disturbing masses in an intermediate layer from observed potential 
fields i.e., gravity and magnetism. Closely linked are problems of structural or location 
interpretation of sub-surface features with sole objective of finding the lateral 
heterogeneities in the Earth for exploration or geological applications. Savinsky [1995] 
explores the determination of the location of contact surface (separating homogenous 
media) interface from gravitational and magnetic fields built upon the solution of the 
integral relating the fields with a density distribution of disturbing masses. The integral 
relationship developed in Savinsky [1995] enables (1) the solution of the problem to be 
found in the non-linearized variant and (2) calculated excessive density to be obtained for 
adjusting the occurrence depth and the oscillation amplitude of the contact surface. 
 
          In many cases geophysical formulae are homologous, that is, the structures of the 
formulae are identical and one equation can be obtained from the other by renaming the 
different variables and/or parameters. This concept has been extended to determine the 
possible height error effects on the disturbing masses in an intermediate horizontal layer. 
This determination of disturbing masses will definitely be erroneous if the horizontal 
layer heights are inaccurately measured mainly because the resulting disturbing masses 
do have a physical meaning only in the explicit intermediate horizontal layer. Following 
the works after Novoselitskii [1965; 1967] one could develop the possible height errors 
and their effects on the intermediate layer density and/or density contrasts by Fourier 
analysis and the convolution theorem. For most practical applications it seems possible to 
take advantage of the fast discrete Fourier transform and where necessary filter out the 
inherent distortion of the higher frequencies. It is essential to do this where the transfer 
function amplifies the high-frequency components of the spectrum as case of downward 
continuation [Cordell and Grauch, 1982].  
  

The difficulties faced on seeking an inverse solution are primarily due to (i) the 
observed data belonging to real Earth whereas computed data belongs to a contrived 
Earth model (ii) the discrete nature of data and practically of a limited set and (iii) the 
presence of errors introduced by the measuring system, leading to the characteristic 
solution of inconsistency, non-uniqueness and instability. The three features imply that 
geophysical inverse problems are in general ‘ill-posed’ i.e., in a strict sense the solution 
would not exist or would be non-unique. Inverse modeling allows for the quantitative 
prediction and establishment of relations to measurements of real objects in such 
situations. With this background the study aims to answer the following questions: - 
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• Can one determine quantitatively the depth-dependent density variations in a sub-

surface horizontal layer or for sub-surface structures? 
 
• What are the possible height errors on the determination of density variations and 

the position of the contact surfaces in a horizontal layer? Do the height errors 
have a significant effect on the resultant density variations and contact surface 
positions?   

 
• What are the height error limits for a given intermediate horizontal layer for 

meaningful geophysical and/or geological interpretations? At what accuracy does 
the errors on height measurements cease to have a significant effect on a 
geological and/or geophysical interpretation? 

 
         To answer the above-posed questions the present study simulates a gravity 
anomaly effect of synthetic sub-surface dipping dike model with depth-dependent 
variable density contrasts in a series of horizontal layers with respect to depth. Each of 
the horizontal layers has its possible maximum value of depth-dependent variable density 
contrast known apriori. Subsequently, variable density contrasts are recovered for a 
series of horizontal layers of varying layer heights i.e., thicknesses of layers in the 
dipping dike used in the inverse analysis. Similar inversion analysis for an actual case 
study in an investigation site in Central Ranges of Chubu District, Japan is attempted to 
demonstrate the efficacy of the inversion modeling with actual geophysical data. 
 
         In an attempt to answer the above-posed questions, the objectives of the present 
study are therefore formulated as: 
 

(1) The first task is to determine the depth-dependent variable density contrasts 
by inversion analysis in the series of horizontal layers i.e., the maximum layer 
density contrasts. It is directly related to the recovery of the causative 
structure as enunciated by the contours of the density contrasts and effectively 
the disturbing masses in an intermediate layer. More so, the positions of the 
contact surfaces are possible due to their direct relationship to the disturbing 
masses. 

 
(2) By cognizance that height measurements are (1) prone to errors and/or 

blunders and (2) rounded off heights of horizontal layers as often seen in 
geophysical literature e.g. Bear et al. [1995]; Nagihara and Hall [2000], the 
second task then is to determine the possible height error effects on the 
density variations (disturbing masses) and the positions of the contact 
surfaces.  

 
(3) The third task is to determine for a given horizontal intermediate layer the 

maximum error limits on heights for meaningful geological and/or geological 
interpretation? At what accuracy does the errors on height measurements 
cease to have a significant effect on the interpretations? 
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(4) Utilize the above procedure i.e., (1), (2) and (3) to the project by inversion 

analyses on a real case study in a part of Central Ranges in Chubu District, 
Japan utilizing actual geophysical data (i.e., gravity data and common 
geological materials) supplied by Geological Survey of Japan [GSJ, 2000]. 

 
1.2 Solution of the Problem 
 
         Modern inversion analysis presumes that geophysical data are inaccurate i.e., 
they have both measurement errors and noise; incomplete i.e., the relevant physical 
properties cannot be completely determined and yet redundant and thus probably 
inconsistent [Sleep and Fujita, 1997]. The geological and/or geophysical applications of 
any geophysical method requires consideration of the target that the technique is actually 
measuring and which results are conclusive and which depend strongly on interpretations, 
that is, the limitations of the method. For any geophysical method to be useful, we must 
be able to relate the data it generates to some physical properties within the Earth. The 
mathematical interpretation of geophysical data or geophysical potential fields anomalies 
can be carried out directly by forward modeling. The physical properties might be a 
mathematical relationship between density and gravity variations, density and rock types 
or location parameters of a sub-surface structure.   
 
         In geophysical literature, the quantitative determination of sub-surface density 
variations with respect to depth from inversion analysis has not been explicitly 
investigated. There have been various attempts to model the sub-surface using forward 
methods, which include linear functions e.g. Murthy and Rao [1979], linear operators e.g. 
Bear et al. [1995], quadratic or polynomial functions e.g. Rao [1986a; 1986b; 1990], 
Martin-Atienza and Garcia-Abdeslem [1988], exponential functions e.g. Cordell [1973], 
Chai and Hinze [1998] among others. In Damiata and Lee [2002] solids of revolution 
have been used to determine the radial variable density in the sub-surface.  In all these 
cases the density variations of the resulting structures were directly inferred from the 
forward models. It is also possible with density gradients to obtain realistic solutions for 
the causative geometry including depth of the gravity and to locate density changes in the 
horizontal plane while the use of gravity itself can be used to accomplish the latter. High 
quality gradients either horizontal or vertical are effective in the density prediction 
consistent with measured near surface densities [Butler, 1984].  
 
         The determination of the density of the intermediate layer from gravimetric data is 
based on the dependence of the observed gravity values on the form of the surface of the 
local relief  [Tkachenko, 1975]. The problem is to derive the greatest possible amount of 
information on the position and the structure of the field sources from measurements of 
the gravitational field anomalies observed on the Earth’s surface [Glasko et al., 1973]. 
The disturbing mass in a horizontal layer ultimately makes it possible to compute the 
differential density contrasts and the positions of the contact surfaces. Data inversion for 
a contact surface has been a key problem of gravimetric studies and the analysis of the 
properties of this problem in some cases requires complicated and long mathematical 
derivations [Starostenko et al., 1992]. It is well known that in a general case the problem 
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of determining a contact surface does not have the stability property and it is necessary to 
impose some restrictions on the solution in order to attain it i.e., the contact surface 
position [Starostenko et al., 1994]. In order for stability of the inverse problem to be 
direct corollary of the uniqueness theorem it is necessary and adequate that the 
uniqueness class be compact [Tikhonov, 1943]. 
 
          In both forward and inverse analysis, it makes little sense to create or fit models 
to levels exceeding the accuracy of the data and to attempt to obtain detail that lies 
beyond the resolution of the method. Conversely, it is usually impractical to include all 
known geological facts in a geological model. For example, it is unwise to worry about 
the precise value of a single physical parameter that varies several percentage points 
when another important property in the formula under evaluation is unknown to an order 
of magnitude. Therefore the geological information of geologic materials in an area is 
important for any meaningful geological and/or geophysical interpretations. The source 
of such data could either be seismic, borehole data etc. that have explicit values for 
particular sub-surface locations. 
 
         In this study we consider a quantitative determination of the disturbing masses 
(i.e., variable density contrasts and position of contact surfaces) for an intermediate 
horizontal layer. Closely related to disturbing masses we investigate the possible height 
errors and their effects on the both density contrasts and the positions of the contact 
surfaces for the same intermediate layer. In a nutshell then Chapter 2 commences with a 
theoretical background for the entire study, which includes the density variations, 
inversion analysis and by downward continuation techniques, the development of 
possible height errors utilizing Fourier analysis and convolution theorem. The 
background theory covers gradients and density variations in Section 2.2 (i.e., 
geophysical gradients in Section 2.2.1 and sub-surface density variations in Section 
2.2.2), the disturbing masses of an intermediate horizontal layer in Section 2.3 (i.e., 
variable density contrasts in Section 2.3.1 and positions of contacts surfaces in Section 
2.3.2).  
 
          Further the height error effects on the disturbing masses due to possible height 
errors on intermediate horizontal layer are considered in Section 2.4. It includes 
deviations due to inaccurate average depth of horizontal layer in Section 2.4.1, distortions 
due to assigned layer thickness or assumed density in Section 2.4.2, top surface being 
identical to observations surface in Section 2.4.3 and layer being approximated as 
surface covered with a mass in Section 2.4.4. By the direct relationship between the 
disturbing masses and position of contact surfaces, the error effects on the positions of 
contact surfaces are determined simultaneously with determination of the error effects on 
density contrasts in Section 2.4. Finally Chapter 2 concludes with height error limits for a 
meaningful geological and/or geological interpretation in Section 2.5 for an intermediate 
layer. 
 
          Chapter 3 delves into the forward modeling of synthetic gravity anomaly effect of 
sub-surface dipping dike model in Section 3.2 (i.e., location and parameters in Section 
3.2.1, geological materials in Section 3.2.2, synthetic density contrasts in Section 3.2.3, 
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synthetic gravity anomaly effects in Section 3.2.4 and the final gravity anomaly effect in 
Section 3.2.5). Section 3.2.4 follows the synthetic modeling of the dipping dike model 
similar to works of Ateya and Takemoto [2002a; 2002b] and Ateya et al., [2003]. 
Inversion analysis based on the gravity anomaly effects of the dipping dike is covered in 
Section 3.3, in which Section 3.3.1 has the determination of the intermediate horizontal 
layer density contrasts and position of contact surfaces while Section 3.3.2 has the 
possible height error effects on the density contrasts and positions of contact surfaces as 
outlined in background theory in Section 2.4. Finally Chapter 3 concludes with Section 
3.3.3 that investigates on the basis of the synthetic gravity anomaly effects, the height 
error limits for meaningful geological and/or geophysical interpretations. 
 
         The inversion analysis is then applied to a real case study utilizing actual regional 
geophysical data in Chapter 4 to test its efficacy. It is a microgravimetry investigation site 
situated in the Central Ranges of Chubu District, Japan. The location of entire region and 
different data sets for the inversion analysis are shown in the Chapter 4 too. Geological 
data is outlined in Section 4.1.2 while digital terrain data (topography) and gravity data 
are given in Section 4.2 (i.e. digital terrain model (DEM) provided by Geographical 
Survey Institute (GSI) in Section 4.2.1 and gravity data provided on CD-ROM supplied 
by Geological Survey of Japan (GSJ) in Section 4.2.2), with due acknowledgements. The 
inversion analysis in Chapter 4 for the microgravimetry investigation site follows a 
pattern similar to that in Chapter 3 including investigations on the height error limits. 
Finally, Chapter 5 summarizes and concludes the study. 
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Chapter 2 

 
 

We are dwarves sitting on the shoulders of giants.  
We see things that are deeper or further, not by the penetration of our own vision  

or by our own height, but because they support us and lend us their height.  
- Bernard de Chartres (12th Century). 

 
One cannot escape the feeling that these mathematical formulae 

 have an independent existence and intelligence of there own, that they are wiser than we are, 
 wiser even than their discoverers, that we get out of them more than was originally put into them.  

– Heinrich Hertz (From Nicholson & Eric Weinstein’s). 
 
2 Theory 
 
2.1 Introduction 
 
        Mapping of the Earth’s heterogeneities in two or three dimensions is increasingly 
being addressed using various methods including inversion analysis and downward-
continuation, which are the useful eyes of geophysicists and geologists to the invisible 
underground structures. Inversion is an important tool when interpreting geophysical data 
as it attempts to reconstruct rock property distribution from measurements of their 
physical properties their responses. The inherent non-uniqueness underlying all 
geophysical inverse problems requires additional information to select a single (viable) 
solution among the ensemble of infinite rock-property distributions able to fit the data. 
Such information may be provided in the form of (1) a specific starting model for the 
inverse run, (2) a specific parameterization restricting the search for predetermined 
geometrical shapes, or (3) an extra mathematical requirement for the solution. 
  
        The goal of gravity inversion is to estimate the parameters (densities, geometry) 
of a postulated underground model from a set of given gravity observations. In three-
dimensional gravity inversion, the model can be defined by surfaces [Barbosa et al. 1999], 
topographic variations [Oldenburg, 1974] or grid of prismatic cells. Mostly inverse 
methods are preferred to forward methods as they offer quantitative solutions that can be 
determined more efficiently than the trial-and-error approach of the forward modeling. 
For example, inversion of gravity data constitutes an important step in the quantitative 
interpretation since construction of density contrasts models remarkably increases the 
amount of information that can be extracted from the gravity data. The present tendency 
is to collect different kinds of geophysical data, which includes seismic, gravity, and 
magnetic data, in order to learn about the Earth’s interior. However, in geosciences rarely 
do measurements of data provide sufficient constraints on a problem to allow for a unique 
and stable solution from inversion analysis. 
  
        The magnitude of gravity depends on five factors: latitude, elevation, topography 
of the surrounding terrain, Earth tides and the density variations in the subsurface while 
the density of sub-surface rocks e.g. sedimentary rocks varies with depth and horizontal 
location because of the effects of stratigraphic layering, facies variations, diagenesis, 
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tectonic history, cementation and compaction from geostatic pressure. Improper field 
measurement intervals, separation of high frequency effects from low frequency ones and 
the shortage of apriori information about the densities for elevations corrections, are also 
part of the problems that commonly affect the practical geophysical data interpretations. 
Any data that has not been measured precisely or processed using the appropriate 
techniques cannot give a very good result irrespective of the type of modeling procedures 
used or vice versa. The main problem in gravity processing and interpretation is the 
separation of the anomalies resulting from the body of interest and the Bouguer 
anomalies.  
 
2.2 Data gradients and Density Variations 

2.2.1 Geophysical Data Gradients  
 
        Conventional gravimetry is applied mostly to delineate very shallow structures or 
cavities where interfering sources are the major obstacle to a reliable interpretation. 
Considerable attention has been directed recently to applications of gravity gradients e.g. 
Stanley and Green [1976], Butler [1979] and Butler et al., [1982]. Gravity-gradient 
interpretive procedures are developed from properties of true or differential gradients, 
while density gradients are determined in an interval of finite difference sense from field 
gravity data. A generalized approach to structural interpretation from gravity data 
consists of (1) determining vertical and horizontal gradient profiles perpendicular to the 
strike of a two-dimensional anomaly, (2) determining the structural geometry from the 
gradient space plot and (3) locating profile positions of structural corners from vertical 
gradient profile. Further the importance and usefulness of the gravity gradients of tensor 
especially the vertical and horizontal gradients of vertical gravity in locating subsurface 
objects have long been noted e.g., Evjen [1936]; Hammer and Anzoleaga [1975] and 
Butler [1983].  
 

Recent developments in aerial gradiometry systems e.g., Jekely, [1988], Vasco 
[1989], Bell et al., [1997] have resulted in renewed interest in gravity gradient 
measurements especially in the delineation of salt intrusions [Bell, 1998]. Because 
derivatives of vertical gravity have greater spatial resolution, delineate lateral boundaries 
of bodies better and can provide more depth information that vertical gravity alone, 
numerous investigations (e.g., Evjen [1936]; Hammer and Anzoleaga [1975]; Butler 
[1983], Blakely and Simpson [1986], Grauch and Cordell, [1987], Butler, [1995]) have 
derived theoretical expressions for the horizontal and vertical derivatives of the vertical 
gravity field resulting from simple geometries (spheres, horizontal cylinders, plates 
truncated plates). Nevertheless, there has not been a complete analysis of all the 
components of the gravity gradient tensor [Mickus and Hinojosa, 2001]. In Mickus and 
Hinojosa [2001], derivation of the gravity gradient tensor components as functions of the 
vertical component of gravity in the Fourier transform domain is studied. 

 
Application of this generalized gravity gradient inversion procedure to high 

quality gravity data results in an effective density prediction consistent with measured 
near-surface densities and the known increase in density with depth in deep sedimentary 
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basins [Butler, 1995]. The geoid undulations, gravity anomalies and the gravity gradient 
changes themselves are different measures but all reflect the density variations of the 
Earth [Li and Gotze, 2001]. Vertical and horizontal intervals must be selected properly 
relative to the depths of interest. For horizontal gradient determinations, there is virtually 
complete freedom in the selection of any desired horizontal interval, while for vertical 
gradient determinations; the vertical interval is limited by practical considerations 
[Butler, 1984].  
 
        And the vertical gravity gradient being more sensitive than gravity itself to the 
geologic structures and neighboring disturbing bodies having fewer influences in its 
interpretation, it can be ideal for interpretation. The utilization of the vertical gradient of 
gravity, even when computed from the gravity field, has definite advantages. It is 
possible to obtain realistic solutions for the geometry including depth of the causative 
(gravity) and to locate density changes in the horizontal plane while the use of gravity 
itself can be effective to accomplish the latter. However, in case of interfering anomalies, 
the resolving power of the gravity field is smaller than that of the vertical gradient.  
 

2.2.2 Sub-surface Density Variations 
 
        The sub-surface or lower half-space consists of the position below the Earth 
surface i.e. z with the -axis being directed downwards. It is recognized that the sub-
surface density of sedimentary rocks varies with depth and hence any anomalous body 
surrounded by them shows a decrease in its density contrasts with depth while its density 
remains unchanged throughout its volume [Murthy and Rao, 1979]. In this respect, it is 
vital to consider variable density rather than constant density when interpreting or in the 
recovery of sub-surfaces structures. Various approximate and closed form expressions 
that describe the gravitational attraction of a vertical cylinder or horizontal circular disk 
with constant density are reported in geophysical literature e.g. Nettleton [1976] and 
[Damiata and Lee, 2002]. Further the use of vertical cylinders although a gross 
simplification is educationally instructive in the forward modeling of various geological 
features of interest e.g., salt dome, volcanic plug and igneous intrusions.  

0> z

 
         Several authors have studied two-dimensional gravity modeling with variable 
density contrasts e.g. Cordell [1973]; Murthy and Rao [1979]; Rao [1986, [1986a, 1990]; 
Martin-Atienza and Garcia-Abdeslem, [1988]. These different works have elaborately 
been presented in Chapter 1. On the other hand, Damiata and Lee [2002] derived integral 
expressions for the vertical component of gravitational attraction arising from vertical 
circular cylinders and horizontal circular disks with radial variation of density. Further, 
the density of the sub-surface structures have been investigated where some authors 
assume a known density contrasts and design nonlinear operators to determine the 
geometry of the source. Other investigators use an approach of solving the unknown 
density distribution by applying a linear operator to the data e.g., Butler [1995] or the 
generalization of Parasnis’ [1961] approach to include the variable density in a cylinder 
[Moon, 1981].  Boulanger and Chouteau [2001] and Chasseriau and Chouteau [2003], 
adopt the parameterization of the sub-surface into regular rectangular prisms and they 
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utilized geological constraints to recover the geometry (depth and size) and density 
distribution of the original dipping dike model.  
 
 
2.3  Disturbing Masses Distribution in Layer 
 
        The main problems connected with the theory of continuation of the potential 
fields into arbitrary regions of the lower half-space in a two-dimensional formulation 
have been studied thoroughly [Savinsky et al., 1981] and their possibility of extension to 
a three-dimensional cases have too been demonstrated. The problem is to derive the 
greatest possible amount of information on the position, location and the structure of the 
causative sources from measurements of the gravitational field anomalies observed on 
the Earth’s surface [Glasko et al., 1973]. The determination of the disturbing masses in a 
horizontal layer ultimately makes it possible to compute the differential density contrasts 
and the positions of the contact surfaces.  
  
        The two-dimensional (2-D) or three-dimensional (3-D) determination of the 
density contrasts in a sub-surface layer is a geophysical ill-posed problem. Ill-posed 
problems can be dealt with satisfactorily by using some kind of regularization [Glasko et 
al., 1987], which means restricting the solution to a subset of parameter space. 
Tikhonov’s regularization method is useful in investigations of real structures under the 
actual conditions of the experiments and the data processing. The stable solution of the 
three-dimensional case is possible, thanks to regularization techniques on the basis of the 
general principles enunciated by Tikhonov and Glasko [1965] and Tikhonov and Arsenin 
[1974]. Nevertheless, since Tikhonov’s method should be considered as a means to 
automating the interpretation process in the case of considerable, apriori unknown total 
errors of input data, a minimum of additional information on the structure is desirable 
[Glasko et al., 1973].  
 

2.3.1 Variable Layer Density 
 
        When the density or density contrasts vary in the lower half-space or in a sub-
surface structure then have what is called variable density in a horizontal layer. Consider 
a system of rectangular co-ordinates with z -axis directed downwards, the disturbing or 
gravitating masses in the lower half-space i.e., z  are reflected in the potential field 
observed on the Earth’s surface. The problem is to derive the greatest possible amount of 
information on the positions, locations and the sub-surface structures of the causative 
sources from these measurements of the gravitational field anomalies ∆

0>

( , , )j j jg x y z  
observed. A possible location in the horizontal layer can be placed at a depth from 

 to , where ∆ is the thickness of the horizontal layer and 
 as the disturbing masses that represent the density distributions within it.  

= 0h H
( , ,Q x y h

= +∆0h H H H
)

 
For convenience, we briefly mention the initial algorithm for the downward 

continuation of the potential field [Savinsky, 1967a]. Let ( , , )j j jy zQ x  be the measured or 
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observed values of the field, ,j jyx  be horizontal co-ordinates and jz  the elevation of the 
points of the measurements above some underlying plane h  In order to find the field 

 on the plane at height h , the following system can be constructed: 
.
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,

)

j y z
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       (2-1) 

 
 

As a result of the approximation: 
 

( , , ( , ,j j jQ x y h K x x y y zα − − +                                   (2-2)  

 
and by substitution of (2-2) into (2-1) the problem reduces itself to the determination of 
the coefficients jα  of the polynomial from the linear algebraic equations with the Grams 
matrix. Figure 2.1 shows the schematic representation of the disturbing masses in an 
intermediate horizontal layer. 

Vertical deviations from 
the horizontal, zj

0h H=

0h H H= + ∆

H∆

0h =

Disturbing Masses in a Layer

( , , )Q x y h

Figure 2-1: A schematic diagram for a sub-surface horizontal layer and its disturbing 
masses (density distributions). 
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If one assumes that there are values of the gravity field ∆ ( , , )j j jg x y z , j = 1, 2… 
N, where jz  are deviations in the vertical distance from the horizontal measurement level 

, the solution of the problem can be achieved analytically through: = 0h
 

+∆+∞ +∞

−∞ −∞

+
= ∆ =

 − + − + + 
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0

0

3
2 2 2 2

( ) ( , , )
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H H
j

j j j
H j j j
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f g

x x y y z h
x y z j N  (2-3) 

  
where  is the gravitational constant, the f jx  and jy  are the - axis and y - axis 
coordinate values. In this case we seek to obtain the density distribution Q x within 
the horizontal layer in the polynomial form, the terms of which are formed by the 
functions of the kernel of the integral equation [Savinsky, 1963; Savinsky et al., 1981]: 

x
( , , )y h

 
α
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= =
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= =
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        On substitution of (2-4) into (2-3) the problem of determining the polynomial 
coefficients αj  is reduced to solution of the set of equations (2-5) with the index i  
represents same number of points on the ( , plane as index : )x y j
 

1
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where jia  is given by: 
 

+∆ +∞ +∞

−∞ −∞

   + + =       − + − + + − + − + +    
∫ ∫ ∫
0

0

2
3 3

2 2 2 2 2 2 2 2

( )( )

( ) ( ) ( ) ( ) ( ) ( )

H H
j i

ji
H j j j i i i

z h z h dxdy
a f dh

x x y y z h x x y y z h

 

π
+∆ + +

=
 − + − + + + 

∫
0

0

2
3

2 2

( 2 )
2

( ) ( ) ( 2 )

H H
j i

H j i j i j i

z z h dh
f

x x y y z z h 2 2
 

π
− + − + + +

=

−
− + − + + + +∆

                        

1
2 2 2 2

0
2

1
2 2

0

1

( ) ( ) ( 2 )

1

( ) ( ) ( 2( ))

j i j i j i

j i j i j i

x x y y z z H
f

x x y y z z H H 2 2

               (2-6) 

 
        Equations (2-6) has the Grams ortho-normalization matrix, its elements being the 
products ,j iKK which determines the existence and uniqueness of the analytic solution at 
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linearly independent K j and enables us to use the convenient method of 
ortho-normalization of 

=, 1,2,...,j N

jK  given by Savinsky [1967b]. This allows the polynomial 
coefficients αj to be computed at N that are practically as great as one can wish 
[Savinsky, 1985] and it is possible by use of a regular grid discrete points to determine 
the density or density contrasts of the disturbing masses.  The resulting expression 

 is the normal solution of the set (2-6) possessing the property [Savinsky, 1963; 
Sen & Stoffa, 1995]: 
( , , )Q x y h

,...,j

+∆0H H

 
= +

2 2 2

22 2
0L L L

QR Q Q                                              (2-7) 

 
where QR  is any of the set of possible solutions of (2-3) and Q  is orthogonal to the 
subspace with the basis K j  Hence it follows that the found Q  has the 
minimal norm in L  and is the best smoothly varying solution.  

0

=, 1,2 .N

2

 
The point-to-point spacing adopted allows for the solution to be obtained 

analytically along the entire surface as given by equation (2-3). The problem of finding 
the different densities in the entire lower half-space below h  was previously 
considered in Savinsky [1984] where the limit for integration in (2-3) was ∞  instead of 

. The resulting density distribution or disturbing masses Q x  in (2-5) 
have physical meaning only at H h . Since the result has a physical 
meaning only between the range H h , a series of different heights of the 
horizontal layers can be chosen to cover a whole entire sub-surface structure or the entire 
lower half-space. 

= 0H

( , ),y h
< < +∆0 0H
< < +∆0 0H H

H

   
        When the inequality  (where dr  is the average distance 
between the measurement points i.e., the grid spacing of the field points) holds, the 
resulting Q  usually can be used for geological interpretations. The set (2-6) becomes 
poorly defined at increasingH  as the influence of errors in field measurements sharply 
rises [Savinsky et al., 1967]. Since geophysical inversions result in non-unique solutions, 
the objective of inversion is first to find a solution (or solutions) and represent the degree 
of non-uniqueness of the solution in a quantitative manner.  

≤ ≤00.65 1.55dr H dr

0

 
In this case the regularization method can be applied to the solution with use of a 

discrepancy based on the general principles proposed by Tikhonov [Tikhonov and 
Arsenin, 1974].  Such inverse problems that do not possess uniqueness and stability are 
ill posed; otherwise the inverse problem is well posed problem. Regularization techniques 
can be applied to ill-posed problems to restore well posedness [Koch, 1990].  
 

2.3.2 Methods of Regularizing the Solutions 
 

The approximation of the solution with aid of the polynomial (2-2) enable the 
obtaining a convenient method of its regularization on the basis of the general principles 
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enunciated by Tikhonov and Arsenin [1974]. Let jia be the coefficient of the system of 
linear algebraic equations used for finding jia and a 

1

( , , )j ji i j j j
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U a g x yα
∞

=

∆ = −∆∑ z

L

                                  (2-7) 

 
be deviations at the j-th point of the measurement, assumed for finding the field on the 
underlying plane. Using the method of residual, we have 
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where β  is chosen is such a way that it is proportional to the root-mean-square error σ of 
the measurements. The procedure of ortho-normalization of jK  and the representation of 
the solution enables as to obtain an expression for its norm (in assumption that  
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which in turn facilitates reduction of the problem to the finding of the conditional 
extremum of the function (2-9) of N variables for the conditions (2-8) 
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Solving  
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and together with equations (2-8), we have 
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Regularization of the solution can be reduced to the finding of Q x for the 
initial values of 

( , , )y z
( , , )j j j jy z U+∆Q x  with the aid of the algorithm. In equation (2-13) jα  

should correspond to ( , , )j j jy z + jQ x , however for values of β not high in equation 
(2-13) 

U∆

jα can be substituted for ( , , )j jy z jQ x  which in many cases enables us to obtain a 
satisfactory solution of the problem. When the interference (noise) is significant, the 
procedure is successively repeated k  times for a given small values of β less σ . This 
permits the regularized solution to be found with complete formalization of the 
algorithm.  
 

2.3.3 Position of the Contact Surfaces 
 
         A contact surface is a delineating surface (i.e., distinct separator surface) between 
two or more densities in the lower half-space or a sub-surface causative structure. Data 
inversion for determination of a position of the contact surface is a key problem in 
gravimetric studies. Analysis of the properties of this problem in some cases requires 
complicated and long mathematical derivations, which can sometimes distract the 
geophysical essence of the material [Starostenko et al., 1992]. There are three basic 
statements of the problem of the gravity data inversion for a contact surfaces positions, 
two of which we mention here.  For two-dimensional contact surface position cases, two 
statements are schematized in Figure 2.2 and Figure 2.3 respectively.   
   

a b
0
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Figure 2-2: A localized body with a constant density σ  surrounded by homogenous 
material of density σ  

1

2

        The regions occupied by the anomalous (disturbing) masses that create 
corresponding fields are hatched. The objective is to determine the position of contact 
surfaces given the potential field ∆ and relief . The substantive 
difference between the models of Figure 2.2 and Figure 2.3 are: (1) Figure 2.2 the sought-
for contact surface position ζ ξ is assumed to be finite and in the describable finite 
interval [a, b], besides it belongs to a localized body structure and (2) Figure 2.3 stretches 
infinitely along the axis z  and the anomalous mass situated between axis 

surface and contact surface ζ ξ  can be conveniently divided into two parts: a 
horizontal plane-parallel layer of thickness h  and the region between the plane and 
the contact surface ζ ξ .  
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Figure 2-3: A body of an infinite extension with constant density σ  in a contact 
interface with a homogenous material of density σ  
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2

 
        Therefore after Starostenko et al., [1992], we can define the positive constant of 
mass density according to the rule σ σ while for localized bodies we usually 
assume , which is more natural, for both cases given in Figure 2.2 and 
Figure 2.3. Among the parameters of a contact surface are: the depth H , the effective 
density  or , the co-ordinates of the ends of the interval e.g. a  
and b , the shape of the separation boundary ζ ξ in the interval [ , . Algorithm for 

σ= −2

2

(

1

2σ σ σ= −1

σ σ σ= −2 1 σ σ σ= −1
) ]a b
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solving the linear inverse problem for a contact surface on the basis of the method of 
normalization was proposed by Tikhonov and Glasko [1964] and for the non-linear 
problem in Tikhonov and Glasko [1965]. 
      
             Further we refer to the works of Tikhonov and Glasko [1965] and Tikhonov and 
Arsenin [1974], which allowed the solution of the problem in the nonlinear statement to 
be found and the methods for simultaneous determination of shape and form of the 
contact surface to be developed [Glasko et al., 1970; 1973]. If the layer densities are 
known, the position of uppermost or lowest contact surface is known, and the positions of 
other contact surfaces are to be reconstructed thereby, then it is a nonlinear problem. On 
the other hand, the problem is linear if the position of the contact surfaces is given and 
the different densities of the layers bounded above and below the contact surface are to 
be found [Starostenko et al., 1982].  
 
         There are several methods in geophysical practice for the determination of the 
position of contact surfaces. For example, the contact surface separating two homogenous 
layers can be found by recalculating the measured gravity field ∆  to the 
underlying horizontal plane h  occurring at the proposed average depth of the 
contact surface [Mironov, 1980]. The actual deviations of the contact surface from this 
plane are then computed from the formula [Savinsky, 1995]: 

( , , 0)g x y
= avH

 

π
∆ = ∆1( , ) ( , , )

2 avS x y g x y H
fD

                                       (2-14) 

 
where  is the difference between densities of the upper and lower layers, H  is 
average their height and f  is the gravitational constant. In the case of a horizontal 
intermediate layer the integration of Q x  in the indicated layer with respect to h  
gives the function Q x  i.e., the average density referred to the unit area of the 
horizontal intermediate layer [Savinsky, 1995]: 

D av

( , , )y h
( ,s )y

 
+∆

= ∫
0

0

( , ) ( , , )
H H

s
H

Q x y Q x y h dh                                             (2-15) 

 

α
=

       − + − + +     =      −     − + − + + +∆    

∑
1

2 2 2 2
0

1

1
2 2

0

1

( ) ( ) ( )
*

1

( ) ( ) ( )

j j jN

j
j

j j j

x x y y z H
f

x x y y z H H 2 2

                   (2-16) 
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        In the case of the two homogenous media one could use the function Q x  to 
find the height of the contact surface S x  measured from the lower boundary 

 upwards given as: 

( , )s y
( , )y

+∆0H H

H

c

=( , ) ( , )/sS x y Q x y D                                               (2-17) 
 
where D  is the given excess density of the lower layer. The division of the maximal 
(positive) value of Q x  by the layer thickness ∆ one finds the excessive density 

 corresponding to the case when the depths H  and  are the limits of 
deviations of the contact surface. We thus obtain: 

( , )s y H

0cD +∆0H

 
=( , ) ( , )/sS x y Q x y D                                                 (2-18) 

 
        The advantage of the method is the possibility of obtaining the calculated 
excessive density D  and to control, on this basis, the given depth of layer H  and its 
thickness . This feature of the method is due to the solution integral equation (2-3) 
relating the field 

c 0

∆H
( , , )j j jg x y z∆  directly with the density distributions of the disturbing 

masses Q x . Effectively this relationship allows for the determination of the density 
contrasts of the disturbing masses in a series of horizontal intermediate layers. 

( , ,y h)

 
 
2.4 Possible Errors in the Variable Density in a Layer 
 
         Having treated the theory of determination of a variable density in a horizontal 
layer by means of gravitational anomalies in the previous sections, we show that it is 
possible to compute the possible deviations from the actual differential density contrasts 
determined.  This arises when the intermediate layer parameters are given inaccurately or 
simplified by rounding off the layer height values. In a classic paper after Peters [1949], 
it is shown how a potential field (magnetic or gravitational) measured at the Earth’s 
surface can be analytically projected upward or downward i.e., mathematically 
transformed to what it would be if it could be measured either above the Earth’s surface 
or along a horizontal plane inside the Earth.  
 
         Downward continuation is essentially the mathematical process for finding the 
appearance of the surface anomaly at a specific depth. It is possible by downward 
continuation to compute the field at the actual depth of the sub-surface structure. For 
potential fields the function is to convert the observed gravity or magnetic fields to what 
it would be if the features of the major interest were much shallower. With actual data, 
the process of downward continuation is usually unstable in a mathematical sense with 
very short-wavelengths components – including those associated with errors in the data – 
become infinite during downward continuation [Sleep and Fujita, 1997, p. 100]. Thus 
downward-continued anomaly changes greatly as small changes occur in data. Viewed 
another way, downward continuation represents an attempt to determine a simplified 
mass distribution at some depth that would satisfy the data. Certain possible mass 
distributions at that depth, including those with very short-wavelength variations, have 
essentially no effect on the observed data.  
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         Following the works by Novoselitskii [1965, 1967], one can develop the possible 
errors due to inaccurate heights on horizontal layer and their effects on the resultant 
density and/or density contrasts for a sub-surface structure or a horizontal layer by 
utilization of both Fourier analysis and convolution theorem. The Fourier series assumes 
that the gravity anomaly and the masses in Earth are periodic, thus when the data are 
upward or downward continued, the process behaves as if the two ends of the region are 
being tied together [Sleep and Fujita, 1997, p. 100]. If data is available for only a small 
area, it is better to remove the average anomaly and the linear trend of the gravity 
anomaly across the region before beginning the Fourier analysis. For most practical 
applications it seems best to take advantage of the fast discrete Fourier transform and 
where necessary filter out the inherent distortion of the higher frequencies. It is essential 
to do this where the transfer function amplifies the high-frequency components of the 
spectrum as case of downward continuation [Cordell and Grauch, 1982]. 
 

2.4.1 Deviations due to inaccurate average depth of horizontal layer 
 
         Inaccurate height measurements result in distortions of differential densities. To 
investigate the effect of the distortion, let the potential and geophysical field be related by 

while keeping the thickness h of the intermediate layer constant, we 
can write two integral equations referring to the density for a two-dimensional 
distribution: 

π =( )/2 ( )zV x fh U x

 
ξσ ξ ξ

π ξ

+∞

−∞

− +=
− +∫

2 2
2

2 2
1

1 ( )( ) ( )ln
2 ( )

x HU x d
h x H

,                               (2-19) 

 
ξσ ξ ξ

π ξ

+∞

−∞

− +=
− +∫

22
2
22
1

1 ( )( ) ( )ln
2 ( )

x HU x d
h x H

                                (2-20) 

 
In equation (2-20), the depth of the top, 2H , of the layer is given with a certain error; 
however, the height is maintained i.e., 2 1 2 1 .H H h− = − =H H  Assuming that the 
Fourier transforms for σ σ and potential U x exists, we can obtain by the 
convolution theorem: 

( ), ( )x x ( )

 
1

( )| | ( )| |2 2

| | | | | |2 2

| | 1( ) ( ) ( ) .
| |

h hH H

h hH

e e hS U U
h e e e

ω ω

ω ω

ωω ω ω
ω

−− − − +

− −

  −  = =   −   
ω

         (2-21) 

 
1

( )| | ( )| |2 2

| | | | | |2 2

| | 1( ) ( ) ( ) .
| |

h hH H

h hH

e e hS U U
h e e e

ω ω

ω ω

ωω ω ω
ω

−− − − +

− −

  −  = =   −   
ω

         (2-22) 
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Here we have = +2 1( H )/2H H . Subtracting equation (2-22) from equation (2-
21) leads to equation (2-23) below: 
 

1 2

| | | || | | |2 2

| | | | ( )| |

( ) ( ) ( )

| | 1 1( )

| | 1( ) 1 .

h h H H

H H H H

S S S

hU
e ee e

hU
e e e

ω ωω ω

ω ω ω

ω ω ω

ωω

ωω

− −−

− − − −

∆ = −

 = −  −
 = −   −


                                      (2-23)  

 
       Denoting −HH by , we arrive at the equation (2-24) below or later equation 
(2-25): 

∆H

{ ωω ω ω ω −∆∆ = − = − | |

1( ) ( ) ( ) ( ) 1 HS S S S
e }                                (2-24) 

 

ω
ωω −∆= | |

( )( ) .H

SS
e

                                                         (2-25) 

 
For positive >H H(  and for negative ) <H H( )  the values, we obtain following 
relations respectively. 

∆H

 
ωω ω −∆= | |( ) ( ) ,HS S e                                                 (2-26) 

 
ωω ω −∆= |( ) ( ) HS S e |                                                   (2-27) 

 
Transition from the Fourier transforms to the original functions leads to the well-known 
integrals with Poisson kernels: 
 

σ σ ξ ξ
π ξ

+∞

−∞

∆= >
− +∆∫ 2 2

1( ) ( ) ,( )
( )

Hx
x H

d H H                           (2-28) 

 

σ σ ξ
π ξ

+∞

−∞

∆= <
− +∆∫ 2 2

1( ) ( ) ,( ).
( )

Hx x d H
x H

H                           (2-29)  

 
        Similar operations are feasible for a three-dimensional distribution. To this end, 
we apply the convolution theorem for a two-fold Fourier transformation to the equations: 
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ξ η
σ ξ η ξ η

π
ξ η

+∞ +∞

−∞ −∞

 
 
 − + − + =  
 − − + − +  

∫ ∫
2 2 2

1

2
2

1
( ) ( )1( , ) ( , )

12
( ) ( )

x y H
W x y d d

h
x y H

                   (2-30) 

 

ξ η
σ ξ η ξ η

π
ξ η

+∞ +∞

−∞ −∞

 
 
 − + − + =  
 − 
 − + − + 

∫ ∫
2 2 2

1

2 2 2
2

1

( ) ( )1( , ) ( , )
12

( ) ( )

x y H
W x y d d

h

x y H

                 (2-31) 

 
        Given the three-dimensional case, the depth of the top, 2H , of the layer is given 
with a certain error; however, the height is maintained i.e., 2 1 2 1 .H H h− = − =H H  
and = +2 1( H )/2H H . Once again denoting −HH by ∆ , the convolution theorem 
has the form (cf. Equations 2-21; 2-22 and 2-23): 

H

 

2 2

1( , ) ( , ) hH

hS u v W u v
e e e

ρρ
ρ

− −
=

−
hρ                                        (2-32) 

 
2 2

2 2

1( , ) ( , ) ,( )h hH

hS u v W u v u v
e e e

ρ ρρ

ρ ρ− −
=

−
= +                        (2-33) 

 
For the difference between equations (2-32) and 2-33), we obtain: 
 

ρ ρ ρ

ρ
− − − −

∆ = −

 = −   −1 2 ( )

( , ) ( , ) ( , )

1( , ) 1H H H H

S u v S u v S u v

hW u v
e e e

                                        (2-34) 

 

or since ρ ρ
ρ

− − =
−1 2

( , ) ( , )H H

hv S u v
e e

W u                                      (2-35)  

 

we have ρ−∆= ( , )( , ) .H

S u vS u v
e

                                                 (2-36) 

 
        From equation (2-36), two equations follow:  
 

ρ−∆=( , ) ( , ) ,( ),HS u v S u v e H H>                                          (2-37)  
 

and ρ−∆=( , ) ( , ) ,( ).HS u v S u v e H H<                                       (2-38)  
 
Since the pair of Fourier transforms is unique, we obtain the integral formulas: 
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σ σ ξ η ξ η
π ξ η

+∞ +∞

−∞ −∞

∆= >
 − + − +∆ 

∫ ∫ 3
2 2 2 2

1( , ) ( , ) ,( ).
2 ( ) ( )

Hx y d d H H
x y H

         (2-39) 

 

σ σ ξ η ξ η
π ξ η

+∞ +∞

−∞ −∞

∆= <
 − + − +∆ 

∫ ∫ 3
2 2 2 2

1( , ) ( , ) ,( ).
2 ( ) ( )

Hx y d d H H
x y H

      (2-40) 

 
        Equations (2-28), (2-29), (2-39) and (2-40) imply that: (1) Small errors in the 
assigned average depth of a layer create only slight changes in the variable density 
dependent of the error in the height ∆ ; (2) In the case of the two-dimensional 
distribution, a relationship exists between the true and the incorrect (distorted) density 
values in the form of an integral with a Poisson kernel and (3) When the error in the 
assigned average depth of a layer is established, the exact densities can be obtained from 
the distorted density values. It suffices to continue σ or 

H

( )x σ in the upward direction 
as harmonic functions for 

( , )x y
> HH and for <H , the continuation must proceed into 

the lower half-space. 
H

   
        These operations have a definite physical meaning such that an increase of the 
bedding depth of the layer with an unchanged gravitational anomaly implies a certain 
density (in particular, in the epicenter of the field of the anomaly); on the other hand, a 
decrease of H leads to a smoothing of the functions σ . This means, when the 
functions and 

( )x
σ( )x σ( , )x y can be transformed by continuation (which is possible in most 

cases), that their upward or downward continuation leads to a change near the epicenter. 
The behaviour of the density function of the periphery of the field of the anomaly is given 
by the change over which the depths H vary. 
 

2.4.2 Distortions due to an assigned layer thickness or assumed density 
 
        The determination of the differential density contrasts in a horizontal layer as 
outlined in Section 2.3 implies the values have only a physical meaning in the horizontal 
layer range H h . Therefore, any distortions in the assigned layer 
thickness alter the resulting density contrasts. To investigate these effects, let us introduce 
the following initial conditions with α  as a constant factor based on the height of 
intermediate layer: 

0 0H H< < +∆

 
2 12 1

2 12 1

2 1 2 1

,
2 2

,

,

. .,( ) ( ).

H H H H H

h H H h H H

h h

i e H H H H

α

α

+ += =

= − = −

=

− = −

,                                     (2-41) 
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Taking into account equation (2-41), we can rewrite equation (2-20): 
 

ξσ ξ ξ
α πα ξ

+∞

−∞

− +=
− +∫

2 2
2
22
1

( ) 1 ( )( )ln
2 ( )

U x x H d
h x H

                           (2-42) 

 
or in the Fourier-representation space: 
 

α αω ω
ωω σ ω

α ω

−
− −=

| | | |
2 2

| |( ) ( ) .
| |

h h

H e eU e
h

                                  (2-43) 

 
A similar expression results for the equation (2-19): 
 

ω ω
ωω σ ω

ω

−
− −=

| | | |
2 2

| |( ) ( ) .
| |

h h

H e eU e
h

                                  (2-44) 

 
        The fact that the left-hand sides of equation (2-43) and (2-44) are identical makes 
it possible to obtain, after simple calculations, relations between the Fourier transforms of 
the exact and the distorted density functions (2-45) and (2-46): 
 

ω α ωα

ωσ ω σ ω
− −=

−

| | | |(1 )
2

| |

1( ) ( ) ,
1

h h

h

ee
e

                                            (2-45) 

 
ω ωα

α ωσ ω σ ω
− −=

−

| | | |( 1)
2

| |

1( ) ( ) .
1

h h

h

ee
e

                                            (2-46) 

 
If α<1, then equation (2-45) can be represented in the following form: 
 

ασ ω σ ω ω
∞

=

  +  = − −     
∑
1

1( ) ( ) exp | | .
2i

h i                                        (2-47) 

 

σ ω σ ω ω α
∞

=

    = −  − −   
    

∑
1

1 1( ) ( ) exp | | .
2 2i

h i                                   (2-48) 

 
Returning from the Fourier transform to the original functions, we obtain 

equations (2-49) and (2-50) as follows: 
 

α

σ σ ξ ξ α
π αξ

+∞∞

= −∞

 +  −   = <
  + − + −     

∑ ∫ 2
1 2

1
1 2( ) ( ) ,( 1),

1( )
2

i

h i
x d

x h i
                     (2-49) 
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α
σ σ ξ ξ α

π
ξ α

+∞∞

= −∞

   − −     = >
    − + − −       

∑ ∫ 2
1 2

1 1
1 2 2( ) ( ) ,( 1).

1 1( )
2 2

i

h i
x d

x h i
                   (2-50) 

 
After similar operations, we obtain for three-dimensional distributions equations 

(2-51) and (2-52): 
 

3
2 21

2 2

1
1 2( , ) ( , ) ,( 1)
2 1( ) ( )

2

i

h i d d
x y

x y h i

α ξ η
σ σ ξ η

π αξ η

+∞ +∞∞

= −∞ −∞

 +  −   = <
    +  − + − + −      

α

   

∑ ∫ ∫  

(2-51) 

α ξ η
σ σ ξ η

π
ξ η α

+∞ +∞∞

= −∞ −∞

α

   − −     = >
       − + − + − −           

∑ ∫ ∫ 32 21
2 2

1 1
1 2 2( , ) ( , ) ,( 1).
2 1 1( ) ( )

2 2

i

h i d d
x y

x y h i

  

(2-52) 
 
        It follows from equations (2-49) and (2-51) that for α<1 the calculations of the 

by means of σ( )x σ is accomplished by means of iterative continuation of the 
unknown density function on the level 

( )x
α − −  
1( 2)h i . If α>1, the density must be 

determined with an exact value of the layer thickness, using the technique outlined in 
section (2.3.1). When they are combined, the relations developed in section (2.3.1) and 
section (2.3.2), between the distorted and the exact values of the variable thickness, 
include all possible cases of inaccuracies in the assigned layer thickness and layer 
bedding values. These relations provide corrections to the results by means of inversion 
downward continuation analysis. This is particularly valuable when the results are 
reviewed on the basis of new data on the geology of a particular region. 
 

2.4.3 Top surface identical to observation surfaces 
 
        The importance of the determination of density changes in a horizontal layer by 
means of gravitational anomalies is self-evident in cases where the top of the layer 
coincides with the surface on which observations are made. As far as the mathematics is 
concerned, the task is to solve the integral equations resulting from equations (2-19) and 
(2-30), when we assume H  =1 0.

ξσ ξ ξ
ξ

+∞

−∞

− +=
−∫
2 2

2
2

( )( ) ( )ln ,
( )z
x HV x f d
x

                                 (2-53) 

 24



 

ξ η
σ ξ η ξ η

ξ η

+∞ +∞

−∞ −∞

 
 
 − + − =  
 − − + − +  

∫ ∫
2 2

2 2 2
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1
( ) ( )

( , ) ( , ) .
1

( ) ( )

z

x y
V x y f d d

x y H

                  (2-54) 

This problem is more conveniently treated through the second derivative of the 
attraction potential in the vertical direction. Then we obtain instead of equations (2-53) 
and (2-54): 

σ ξ ξ
ξ

+∞

−∞

=
− +∫ 2

2 2
2

( ) 2 ( ) ,
( )zz

HV x f d
x H

                                 (2-55) 

 

σ ξ η ξ η
ξ η

+∞ +∞

−∞ −∞
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∫ ∫ 2
3

2 2 2 2
2

( , ) 2 ( , ) .
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zz
HV x y f d d
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           (2-56) 

 
Dividing equation (2-55) by 2πf and equation (2-56) by 4πf, and introducing the 
notations: 

( ) ( ),
2
( , ) ( , ).
4

zz

zz

V x Q x
f

V x y R x y
f

π

π

=

=
                                              (2-57) 

 
We obtain integral equations with Poisson kernels: 
 

σ ξ ξ
π ξ

+∞

−∞

=
− +∫ 2

2 2
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HQ x d
x H

                                   (2-58) 

 

σ ξ η ξ η
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                    (2-59) 

 
        The integral equations (2-58) and (2-59) have been treated by Strakhov [1963]. 
Let us estimate the errors in the density determination, which result from errors in the 
accepted thickness value H of the layer. We assume that the function σ and its 
Fourier transform S were determined with the exact H value, whereas 

2 ( )x
ω( ) 2 σ and ( )x

ω( )S  were obtained with an inaccurate 2H value, Q is the Fourier transform of Q x . 
Then, with convolution theorem we can rewrite equation (2-58) as: 

ω( ) ( )

 
ωω ω ω ω−= = 22| | | |( ) ( ) , ( ) ( ) .HQ S e Q S e ω−H                                  (2-60) 

 
Since the right-hand sides are equal, we obtain:  
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ωω ω − −= 2 2| |( )
2 2( ) ( ) ,( ),H HS S e H H>                                       (2-61) 

 
ωω ω − −= 22| |( )

2 2( ) ( ) ,( ).H HS S e H H<                                      (2-62) 
 

which corresponds to the following integral equations: 
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Similar relations hold in the three-dimensional case: 
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The equations (2-65) and (2-66) describe the effect of the layer thickness errors and the 
respective operations to correct them. 
 

2.4.4 Layer approximated with a surface covered with a mass 
 
        It has been mentioned in Novoselitskii [1965; 1967] that in some cases it should 
be convenient to replace the exact kernel of equation (2-19) by an approximation, in 
essence, to solve an integral equation with a Poisson kernel: 
 

σ ξ ξ
π ξ

+∞

−∞

=
− +∫ 2 2

1( ) ( ) .
( )

HU x d
x H

                                        (2-67) 

 
This is equivalent to the approximation of the attractive potential of a horizontal layer 
with a variable density by means of the attractive potential of mass-loaded surfaces at the 
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same average depth. We are interested in establishing the relationship between σ and ( )x
σ( )x .  
 
        We derive the desired relations by representing equations (2-19) and (2-67) 
through their Fourier transforms and through application of the convolution theorem, i.e., 
 

 
ω ω

ωω σ ω
ω

−
− −=

| | | |
2 2

| |( ) ( ) ,
| |

h h

H e e
h

U e                                          (2-68) 

 
ωω σ ω −= | |( ) ( ) .HU e                                                    (2-69) 

 
By equating the right-hand sides of equations (2-68) and (2-69), we obtain 
 

ω ω
ωσ ω σ ω

ω

−
− −=

| | | |
2 2

| |( ) ( ) ,
| |

h h

H e ee
h

                                          (2-70) 
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From this we obtain the integral relation in which we are interested: 
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               (2-72) 

 
         This integral relation determines the error due to the approximation of the 
attractive potential of a horizontal layer of finite thickness by the attractive potential of a 
mass-loaded surface; this relation provides also a correction to the function σ( )x obtained 
from the solution of equation (2-67). If we assume that the integral transformations in the 
form of upward and downward continuations can be used for the σ and ( )x σ , then the 
left-hand side of the integral relation has the meaning of a function 

( )x
σ which was 

continued into the upper half-plane to the height 
( )x

− ; then we may denote the function 

by 

2h

σ ; thus, −( , 2)x h
2 2

2
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h x
ξσ σ ξ
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  − + − =   −∫ .h ξ                       (2-73) 

 
The similarity between equations (2-53) and (2-73) is obvious. Accordingly, we 

can write: 

    σ σ ξ
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−∞
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ξ.                             (2-74) 

 27



 
ξ ησ σ ξ η

π ξ η

+∞ +∞

−∞ −∞

   − =       − + − + 
∫ ∫ 3

2 2 2

1, , ( , )
2 2 ( ) ( )z

h hh x y
x y h2

d d               (2-75) 

 
In other words, when we want to determine the density in a horizontal layer without 
errors by approximating its attractive potential through that of a surface loaded with 
mass, we may use an analytic continuation iteration outlined here. Sometimes downward 
continuation is more difficult to apply because the short-wavelength terms blow up below 
the surface of measurement. Even where downward continuation is geologically justified, 
the terms retained in the Fourier analysis must be spaced widely enough so that negligible 
short-wavelength components at the surface do not dominate the anomaly computed at a 
depth. 
 
 
2.5 Height error limits in Geological and/or Geophysical Interpretations 
 
        The interpretation of gravity anomalies in terms of buried mass structures of 
geological importance is not as straightforward as many different distributions at the 
depth can yield the same anomaly. This difficulty generally arises with inverse or 
downward continuation problems in geophysics. Thus, the skill in interpreting gravity 
data does not involve the ability to understand complex mathematical theory, but rather 
the ability to use all the available geological and geophysical data to build a coherent 
story. For geophysical methods with low resolution, like gravity, automated inversion can 
be dangerous unless it incorporates geological constraints. It is essential that inversion 
results be checked by simple and direct computations. In both forward and inverse 
modeling, it makes little sense to create or fit models to levels exceeding the accuracy of 
the data of to attempt to obtain detail that lies beyond the resolution of the method. 
   
         Generally, geophysics provides only indirect clues to the presence of 
economically useful deposits. For a geophysical method to be useful, therefore, the 
measured physical property must be able to be interpreted in terms of geology. Such 
interpretations is not always straight forward because different methods sample different 
components or rocks – that is, the physical property measured by a geophysical method 
may indiscriminately sample all, or only limited, constituents of a rock. Gravity is 
sensitive to the average density of the rocks, for example, while seismic properties are 
greatly influenced by the shape and abundance of the cracks and by the pore fluids, 
although they also depend on the major constituents of the rock. 
   
        Many geological materials are heterogeneous at all scales from sub-grain-size 
zoning to rock formations found in the crust of the Earth. For thin and shallow beds, the 
precision needed for geophysical interpretation can usually be obtained – that is 0.01 
g/cm3 for 10 m bed and 0.1 g/cm3 for 1 m bed [Sleep and Fujita, 1997, p. 98]. In fact, the 
variation of gravity with depth obtained from bore-hole measurements sometimes must 
be corrected for the gravitational attraction of surface and interface topographic 
roughness, as well as for localized anomalous masses that lie beneath the measured 

 28



interval [Sleep and Fujita, 1997, p. 100]. The difference between the rocks at deeper 
depths becomes smaller which implies the accuracy at greater depth is much more than 
these model values.  
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Chapter 3 
 

Exercise is the beste instrument in learning. 
- Robert Recorde (The Whetsone of Witte (1557)). 

 
Practice yourself, for heaven’s sake in little things nd thence proceed to greater.  

- Epictectus (Discourse IV.i) 
 

The point of philosophy is to start with something so simple  
As not to seem worth stating and end with something so paradoxical that no one will believe it.  

-- Bertrand Russell - “The Philosophy of Logical Atomism”. 
 
 

3 Modeling 
 
3.1 Philosophical Background 
   
        Scientific work is mainly concerned with the construction, refinement or redesign 
of models. There exist a huge variety of models, some state a mathematical relation 
between observables, some predict future evolutions, some are probabilistic and some 
deterministic while some are simple and some complex. Models can be divided into 
qualitative and quantitative and differ essentially in the applicability and verifiability. 
Models in which physical quantities play a minor role are termed qualitative models. 
They describe the processes of the corresponding systems with words and assign only 
roughly known values or intervals to the relevant physical quantities avoiding 
mathematical formulae [Droste, 1998]. Normally the number of these quantities is low.  
  
        Quantitative models, in contrast, specify exact mathematical relations between 
physical qualities. Verification or falsification is more objective for quantitative models 
than for qualitative models, since they are formalized and even large amounts of data are 
treatable with the help of computers. However, even for quantitative models there is no 
consensus about the methods for verification. It is even possible that two individuals have 
different opinions about the validity of a specific model. Quantitative models contain 
both measurable quantities as well as quantities that are inaccessible to direct 
measurements. The measurable quantities are usually collected as far as possible to 
determine the values of the unknown quantities. In other words, the free parameters of 
the model are estimated. Practically quantitative models are a mixture of fundamental 
aspects and consist of laws that describe commonly accepted principles of physics – the 
laws that have been tested in many variations and their wide acceptance regard them 
axioms in physics; prominent of which are axioms of conservation of energy, momentum 
and mass [Droste, 1998]. 
   
        Mathematical process modeling is one of the most important tools in geophysical 
sciences, since it allows quantitative prediction and establishment of relations to 
measurements of real objects. The results of mathematical process models, however, are 
directly comparable to measurements, which allow rejection or acceptance of the same, 
depending on the comparison between model predictions and observations. However, 
these methods of comparison are far from being unified or generally accepted 
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themselves. Most practicing geophysicists would say that while the motivation of 
inversion to get quantitative estimate of the physical properties is appealing, they would 
prefer to use standard methods because they do not believe inversion could work well in 
practice. Actually the devout inverters would reply that standard methods are inversion 
too because they try to obtain a picture of the sub-surface [Mora, 1987]. The strength of 
the inversion philosophy is that it tries to account for the geophysical data in terms of the 
Earth’s properties using known equations of physics. This strength, however, is also a 
weakness because it often leads to impractical algorithms [Mora, 1987]. 
  
        In order to understand how particular data are affected by a model, we must be 
able to calculate theoretical data for an assumed Earth model. This constitutes the 
forward problem. It involves deriving a mathematical relationship between data and 
model. It is safe to say that for many geophysical problems, the forward problems are 
fairly well understood in that the basic constituent equations have already been 
recognized and most research has focused in finding the solutions to these basic 
equations [Sen and Stoffa, 1995]. Unfortunately, the real Earth is very complex and it is 
the complexity or the heterogeneity of the Earth that is of interest to geophysicists. In 
many cases, however, elegant analytic solutions can be obtained when some simplistic 
assumptions are made for the Earth model.  
 
3.2 Model of a Dipping Dike 
 
        The density contrasts is the density of the model structure minus the remaining or 
surrounding geological materials, which are mostly assumed to be homogeneous. When 
one seeks to explain the gravity anomalies in terms of density variations, we speak in 
terms of density contrasts, which consider the gravity effects of the models. Thus, for 
example a sub-surface structure with density of 2.0 g/cm3 surrounded or enveloped with 
geological materials with a density of 2.6 g/cm3 has a density contrasts of –0.6 g/cm3.  
Geophysicists and/or geologists prefer models consisting of a limited number of layers or 
local bodies, which are relatively homogenous and can be separated by distinct 
boundaries, with or without minor transition zones. In this case therefore the density or 
density contrasts is clearly sought for or known for the different partitions in the structure 
or the sub-surface. 
 
        The gravity anomaly of a complicated two-dimensional source having arbitrary 
surfaces and the density distribution separated by either horizontal or vertical direction 
can be calculated using a combination of closed form solution or numerical 
interpretations [Ruotoistenmaki, 1992]. Rao [1986; 1990] considered the problem of 
variable density contrasts and derived the gravity anomalies of prisms and trapezoids 
having second-degree polynomial density distributions in the vertical directions. Since 
the anomaly equations were given in closed form, it limited the source to simple 
geometries bounded by planar surfaces. A more general approach was undertaken in 
Guspi [1990] who considered gravity sources bounded by polygons and having 
polynomial density distributions varying with depth. 
 

 32



         When the geological information is particularly well defined, some prisms may 
have their densities assigned to specific values [Braille et al., 1974]. Some authors 
minimize the volume of the causative body [Green, 1975; Last and Kubik, 1983] and 
Guillen and Menichetti [1984] invoke minimum source moment of inertia. One may 
expect that density to vary slowly with position or conversely vary quickly or sharply. 
Smoothness or roughness of density distribution, which control gradients of parameters in 
spatial directions, can be introduced and has been applied in magnetic inversion by 
Pilkington [1997].  
 
        Li and Oldenburg [1996; 1998] proposed a sub-surface model of a dipping dike 
with a constant density throughout its volume. The gravity anomaly effect was 
transformed to pseudo-magnetic anomaly and adopted for the location and parameter 
recovery of the structure in the sub-surface. Boulanger and Chouteau [2001] on the other 
hand adopted a similar model but introduced the rectangular parameterizations to the sub-
surface structures to aid the recovery of the sub-surface structures. We adopt a variant of 
the same but introduce a depth-dependent density contrasts factor in the sub-surface 
structure. Effectively the differential density contrasts of the dipping dike-like structure 
with respect to height of horizontal layers are known apriori and test recovery of the sub-
surface dipping dike utilizing constraints. This apriori information may come from 
different sources either experimentally from rock density measurements or result from 
posteriori information of a previous inverse problem fun with a different data set [Lee 
and Biehler, 1991]. 
 

3.2.1 Location and Parameters 
 
         Starting from gravity anomaly effects, which explain density variations in the 
sub-surface structure, our ultimate goal is to recover the structures by invoking a valid 
model of the sub-surface before we can proceed to a more advanced analysis. It is often 
convenient to fit a number of generalized geometric forms with different dimensions and 
some cases densities to simulate a presumed sub-surface structure. The gravity inverse 
problem to estimate the sub-surface of an interface separating two or more homogenous 
media is an ill-posed problem; sometimes-additional information, besides gravity 
measurements needs to be supplied by the interpreter to transform it into a well-posed 
problem. 
 

The resultant gravity anomaly effect of the possible 3-D dipping dike-like 
structure is obtained by the computations of the independent two 2-D faces XZ and YZ. 
Assuming a sub-surface structure that consists of nearly homogenous sediments we 
simulate a dipping dike-like structure with its depth to top surface i.e., model Earth 
surface as 0.025 km, depth to the bottom z  is 4.050 km and regular x  and 

directions widths of 3.050 km. The sub-surface causative structure is such that XZ face 
has dip angle of , the YZ face appears as a finite horizontal slab and the top XY face 
is rectangular (a regular square). Figure 3.1 shows the three faces of sub-surface dike-like 
structure and the parameters given above are adopted in the independent gravity anomaly 
effects computations. 

1z 2

y
45°
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(b) YZ Face 
(Vertical Slab)

(a) XZ Face 
(Angle of dip = 45º)

(c) Dike Top
(Regular Square)

bx by

x

y
β

 

Figure 3-1: Three independent faces (XZ, YZ and XY) that constitute sub-surface 
dipping dike model. 

 

3.2.2 Geological Materials 
 
        Rock densities prominently feature in the analysis of sub-surface structures and 
therefore before addressing the gravity effects it is important to consider them. The total 
variation in rock densities might be quite small relative to the other physical properties 
although the density contrasts of any sub-surface structure remarkably depend on them. 
The bulk density of rocks and sediments is controlled by the densities of the minerals 
present, the amount of open space in the rock or sediments and the degree to which fluids 
fill in these spaces.  

 
In the interpretation of gravity anomalies, it is necessary to estimate the densities 

of the sub-surface rocks before one can postulate their structure. For this reason it is 
desirable to give some data on the densities of the representative rocks in regions where 
the gravity surveys are ordinarily made. It should be pointed out that it is not the absolute 
densities but the density contrasts that are significant. Table 3.1 shows the various 
common geologic materials that were adopted in the inversion modeling compiled from 
different sources. The blank spaces in Table 3.1 are due to lack of explicit depth ranges 
for the given geological materials.  
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Table 3-1: Densities of Common Geologic Materials 

Sources: * Hirokawa [1978],  + Telford et al., [1990] and ++ Burger [1992] 
 

Geologic Materials Density Ranges 
(g/cm3) 

Model Density 
(g/cm3) 

Depth  
(km) 

 
Alluvial Deposits* 2.00 - 2.25 2.12 < 0.3 

Fluvial Deposits (5Ma)*  1.95 – 2.30 2.25 < 0.4 

Turbidites (Miocene)* 2.35 – 2.70 2.54 < 2.0 

Sedimentary Rocks*  2.30 – 2.70 2.60 1.7 – 5.0 
 

Igneous Rocks (Basalt)+ 2.70 – 3.30 2.99 < 2.50 

Metamorphic Rocks++ 2.6 – 3.10 2.74 - 

Igneous Rocks 
(Granite)+ 

2.50 – 2.81 2.64 - 

Earth Crust* 3.27 ~ 3.27 > 5.00 

 

3.2.3 Synthetic Density Contrasts 
 
         The variation in density contrasts with depth can be approximated by a smooth 
function either quadratic or exponential by least squares fitting of the function to the 
observed data [Rao, 1986; Zhang et al., [2001]. Further Zhang et al. [2001] gives 
gravity anomalies of two-dimensional bodies with layers of variable density contrast like 
rectangular cylinders and inclined fault models. Following the works of Rao [1986a] and 
Zhang et al., [2001] we approximated the depth-dependent variable density contrasts for a 
sub-surface dipping dike using the common geological materials given in Table 3.1. The 
sub-surface depth-dependent variable density contrasts in g/cm3 were modeled with the 
depth in km as:  
 

2( ) 0.515 0.109 0.003z zρ∆ = − + − z                                 (3-1)   
 

The common geological materials in Table 3.1 and the variable density contrasts 
equation (3-1) are with a few exceptions similar to those of Ateya and Takemoto [2002a; 
2002b]. Table 3.2 shows the density contrasts and the differential density contrasts in the 
respective intermediate horizontal layers. Since equation (3-1) gives the density contrasts 
per a horizontal layer, the actual density of the layer is obtained additively from 
differential density contrasts to the adopted or known reduction density. The variations of 
the density contrasts with depth based on equation (3-1) are shown in Figure 3.2 to a sub-
surface depth of 5.0 km independently while Figure 3.3 shows the combined density 
contrasts to depths of 5 km, 10 km and 15 km respectively. 
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Figure 3-2: Depth-dependent variable density contrasts  to depth of 5.0 km into the sub-
surface. 

( )zρ∆

 

 
 

Figure 3-3: Depth-dependent variable density contrasts  for three different sub-
surface depths of 5.0, 10.0 and 15.0 km respectively. 

( )zρ∆
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Table 3-2: Densities in a series of horizontal intermediate layers in the Dipping Dike. 

 
Layer Layer depth 

(km) 
Density Contrasts 

 (g/cm3) 
Differences in 

Contrasts (g/cm3) 
1 0.000 -0.525 0.000 

 
2 0.400 -0.493 0.032 

 
3 0.800 -0.451 0.042 

 
4 1.200 -0.409 0.042 

 
5 1.600 -0.368                0.041 

 
6 2.000 -0.329 0.039 

 
7 2.400 -0.290 0.039 

 
8 2.800 -0.252 0.038 

 
 
 
        Most of the common geological materials used in the synthetic modeling are from 
Central Ranges in the Japan Alps and therefore the reduction density adopted was 2.645 
g/cm3, a value closer the average value by Yamamoto et al., [1982]. Our synthetic dike-
like structure has no outcrops i.e., does not crop above the Earth surface and therefore the 
adopted surface density contrasts is . The surface density towards 
Northeastern Japan is about 2.30 g/cm

(0) 0.525ρ∆ = −
3 because sedimentary and volcanic rocks and pyro-

clastic flows are distributed widely over the region [Komazawa and Mishina, 2002]. The 
relationships between the different layers in the surface are shown by the differential 
density contrasts between them. Table 3.2 gives the maximum possible values for 
differential density contrasts in the horizontal layers assuming homogenous geological 
materials.  
 

3.2.4 Synthetic Gravity Anomaly Effects 
 
        For simplicity we assume data interpolated onto a regular rectangular grid over 
the sub-surface dipping dike. The top surface of model is assumed to coincide with a flat 
Earth surface, though dike does not outcrop. Independently, the YZ face is modeled as 
sub-surface 2-D semi-finite horizontal slab with different parameters are shown in Figure 
3.4 where x is the distance of an observation point P , t  is the thickness of slab, β is the 
complement of the dip angle α  while z  and z  are the depths to the top and bottom of 
the slab respectively. The other constants in equation (3-2) are f  the gravitational 
constant and 

1 2

( )zρ∆  the variable density contrasts.  If the end of the slab is vertical 
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0β = while if the slab outcrops 1 2 10, , 2t πθ= = =z z and . Thus, as the dike 
structure does not outcrop, the dipping dike does not have any structure’s geological 
materials for z  less z . 

1r = x

i 1

1)sinθ
obg f

4(bθ −2 ( θ=

( )zρ∆t

z2

z1

α

β
θ1

θ2

Px

r2

r1

M odel Surface

1ω

2ω

 

Figure 3-4: Model diagram showing the parameters and/or variables for gravity anomaly 
effect of a 2-D semi-infinite horizontal slab. 

 
        The gravity anomaly effect gobs of a two-dimensional (2-D) semi-finite horizontal 
slab is given by Geldart et al., [1966] and Telford et al., [1990] (p. 43) as: 
 

2 2 1 1 2

2 2
1

( ) ( ) ( cos2
2 ( )

cos ln( )
s

t z z x
z rx r

π θ θ θ β
ρ

β

  + − + −  = ∆   +   
             (3-2) 

β

 
On the other hand, the XZ face can be modeled as a sub-surface dike-like structure with 
its different parameters as shown in Figure 3.5. A two-dimensional dike can be obtained 
by the subtraction of two slabs one being displaced horizontally with respect to the other 
and the gravity anomaly effect gobs is given by Geldart et al., [1966] and Telford et al., 
[1990] (p. 43) as: 

{ }

{ }

2 2 4 1 1 3

2 3 4 1 3

2 2 3 4
1 4 3

( ) ( )

) sin cos ( ) )

cos ln( ) ln( )

obs

z z

g f z x
r r rx br r r

θ θ θ θ

ρ β β θ θ θ θ

β

 − − − 
 
 ∆ + + − − + 
 
 + +  

                (3-3)  
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Figure 3-5: Model diagram shows the parameters and/or variables describing the gravity 
anomaly effect of a 2-D sub-surface dike-like structure. 

 
        The distance x  is positive when the point P is to the right of central position with 
all angles measured in the clockwise direction β  and θ  being measured from the vertical 
and α from the fault plane. If the sides of the dike are vertical β while if the slab 
outcrops and 

i

0=
1 1 30, , ( )z r x r x= = = −b 1 2 3θπθ = = . In equation (3-3) f  is the 

gravitational constant, ( )zρ∆

°

 the density contrast and z  is the depth in the sub-surface, 
 the distance to a given point on either side of the central location and inclination angle 
 is the complement of the dip angle α . 

i

x
β
     
        Ateya and Takemoto [2002a; 2002b] computed of the gravity anomaly effect for a 
model of sub-surface 2-D dipping dike with a depth-dependent variable density contrasts 
similar to the two-dimensional face XZ. The regular grid spacing of 0.50 km adopted in 
the computation of the gravity anomaly effects for both 2-D horizontal slab and 2-D dike-
like structure to extend of a ± 14.00 km in x - and y -axes directions. Following the work 
of Ateya and Takemoto [2002a; 2002b], the independent (YZ and XZ with a dip angle 

) faces gravity anomaly effects were computed using equations (3-2) and (3-3). 
The maximum gravity anomaly effect of the two independent faces was nearly 9.50 
mGals as shown in Figure 3.6. 

45β =
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Figure 3-6: Gravity anomaly effects of the 2-D independent dike faces (XZ and YZ) with 
a point-to-point spacing 0.50 km. 

 

3.2.5 Gravity Anomaly Effect for Dipping Dike 
 
        The gravity anomaly effects of the two-dimensional independent faces i.e., XZ 
and YZ were generated to cover the entire rectangular grid and superimposed onto each 
other with each co-ordinate having a gravity anomaly effect from each face interpolated 
directly above the grid nodes to form one system of anomaly effects. The   resultant 
anomaly effect was then modeled dependent on the co-ordinate locations across the 
possible to have a maximum gravity anomaly effect at (0  equal to the maximum effect 
of each independent face. The data was then contaminated by un-correlated Gaussian 
noise of maximum amplitude of 0.50 mGals. The noise vector V  added to  was 
generated as: 

, 0)

n obsg

 
1
2[0.5%.var( )] * (0,1) 0.120 * (0,1)n obsV g N= = N                       (3-4) 

 
where N  denotes normally distributed random numbers with maximum amplitude 
of  in the variance of the gravity data g . The final gravity anomaly effect 
was deliberately shifted by 5.0 km eastwards and the peak anomaly maintained at 9.50 
mGals to enable investigations of the apparent shifts in the probable sub-surface 
structure. The two-dimensional (contour interval 0.75 mGals) and three-dimensional 
gravity anomaly effects for the sub-surface dike are shown in Figure 3.7.  

(0,1)
var( obsg5. )± obs
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Figure 3-7: (a) Two-dimensional (contour interval of 0.75 mGals) and (b) three-
dimensional resultant gravity anomaly effects of the dipping dike model displaced by 5.0 
km Eastwards 
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3.3 Inversion Analysis 
 
        Solving an inverse problem means making inferences about physical systems 
from observation data. These inferences are sometimes based on the mathematical 
representations of the systems, which we call models. Functionals of the model represent 
observable properties of the system such as the mass density as a function of space in the 
Earth, the depth of continents or the radius of the core-mantle boundary [Scales and 
Tenorio, 2001]. Since the number of parameters can be much larger than the number of 
observations at the ground level, the inversion can give rise to an undetermined system of 
equations (algebraic ambiguity) [Chasseriau and Chouteau, 2003]. In addition, there are 
many equivalent density distributions below the surface that will reproduce the known 
field (theoretical ambiguity) because the gravity field follows the Gauss’ theorem 
[Blakely, 1995]: the vertical component of gravity is proportional to the total mass below, 
so long as the mass is bounded in volume.  

Dipping Dike
{Parameters, Location and Variable Density}

Sub-surface Dike
•Contrasts, ∆ρ(z)
•Layer depths 

Density Variations
{Layer depths & δ∆ρ(z)}

Analysis　Data
{Locations & Anomaly}

Analysis Procedure
•Ortho-normalize (Savinsky, 1967)

•Regularize (Tikhonov & Arsenin, 1974)
•Solution (Savinsky, 1965; 1985)

Density Variations
{Layer depths & δ∆ρ(x,y,z)}
{Contact Surface Positions}

Are the maximum variations 
in density comparable?

Forward Inversion

 

Figure 3-8: Flow diagram utilized in the quantitative determination of the horizontal 
layer density contrasts and position of the contact surfaces. 

 
In our case, the goal besides the determination of the differential density contrasts 

in the sub-surface horizontal layers; we examine whether it is possible to determine the 
change in the density contrasts with respect to depth. This possible change will be 
determined from the apriori model, which try to recover by inversion analysis modeling. 
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Figure 3.8 above shows the flow diagram that adopts the sub-surface model, the 
procedure for determination of the disturbing masses density contrasts in a series of 
horizontal intermediate layers. 

 
In formulating the inverse problems and interpreting inversion estimates, we need 

to address the following questions (1) how accurately are the data known? What does it 
mean to fit the data? (2) How accurately is the physical system modeled? Does the model 
include all the physical effects that contribute significantly to the data? (3) What is known 
about the model before the data are observed? What does it mean for a model to be 
reasonable? Many strategies can used to limit the number of acceptable models; they all 
involve some kind of constraints to restrict the resulting solution where apriori 
information can take several forms. It may be previously obtained from geophysical or 
geological data either on the surface or in boreholes, or it may simply be dictated by the 
physics of the problem [Chasseriau and Chouteau, 2003]. 
 

3.3.1 Layer density contrasts and contact surfaces positions 
 
       The limiting (boundary) heights of a horizontal layer with arbitrary disturbing masses 

 has been given by equation (2-5) in Section 2.3.1 of Chapter 2 while an 
intermediate horizontal layer of height ∆ is diagrammatically depicted as Figure 3.9. 
The determined density contrasts for such a horizontal intermediate layer in the sub-
surface have a physical meaning only at H h hich as the limiting 
heights. The model surface has a flat top where all the vertical deviations from the 
horizontal are given as z  depicted in Figure 3.9 and henceforth adopted in the 
inversion analysis. 

( , , )Q x y h
H

0 0H< < +∆H w

0.0j =

V e r t ic a l  d e v ia t io n s  f r o m  
th e  h o r iz o n ta l,  z j= 0 .0

0h H=

0h H H= + ∆

H∆

0h =

D e n s ity  C o n tr a s ts
• S y n th e t ic  M o d e l,  ∆ ρ ( z )

• I n v e rs io n  A n a ly s is ,  ∆ ρ (x ,y ,z )

( , , )Q x y h
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Figure 3-9: Horizontal intermediate layer for the sub-surface model with vertical 
deviations from the horizontal being equal to zero. 

        The vertical deviations in the model are adopted in the inversion 
modeling but in actual field values they are not necessarily equal to zero. In adopting the 
gravity anomaly effect from Section 3.2.5, the computation of the differential density 
contrasts and positions of the contact surfaces in a series of horizontal layers with 
varying heights in the sub-surface proceeds as in the flow diagram in Figure 3.8. The 
forward model had apriori depth-dependent density contrasts as

0.0jz =

( )zρ∆  while  
are inversion analysis density contrasts. Equations (2-5) and (2-6) from Section 2.3.1 and 
equations (2-16) and (2-18) in Section 2.3.2 of Chapter 2 were utilized in computations of 
the depth-dependent differential density contrasts and positions of contact surfaces 
respectively. The position of contact surfaces serves two main purposes – (1) due to the 
direct relationship with the maximal differential density contrasts in the intermediate 
layer, checks the maximum height of contact surface which must either be equal or less 
than the height of horizontal layer height ∆  and (2) determines the actual position of 
the contact surfaces in the same horizontal layer. 

( , , )x y zρ∆

H

 
         Inversion analysis in the form of differential density contrasts and position of 
contact surfaces for a sub-surface horizontal layer of layer range 0.400 ~ 0.800 km is 
shown in Figure 3.10. The differential density contrasts for the layer range 0.400 ~ 0.800 
km had a maximum value of 0.045 g/cm3 and contact surface height of 0.400 km. The 
shape and cluster of the contours gives a glimpse of the disturbing masses in the 
intermediate layer. A series of horizontal layers with different heights were investigated 
to determine the differential density contrasts and position of contact surfaces. The 
summary of results for a series of horizontal layers up to a depth of 2.400 km is shown in 
Table 3.3. If the different horizontal layers are stack one below the other for the entire 
sub-surface, it shows the shift in depth location in the sub-surface of the disturbing 
masses i.e., position of the dipping dike-like structure. This effectively implies the 
recovery of the actual location of the causative structure in each horizontal intermediate 
layer.  
 
        The differences between the differential density contrasts from forward modeling 
and inversion analysis for each horizontal layer are also given in Table 3.3. It shows the 
extracted inversion analysis results where the heights of the horizontal layers are kept 
constant at ∆  km though several different horizontal layer heights were 
actually investigated. The second column represents the differential density contrasts 
from the forward model 

0.400H =

0.525−
( , , )x y z

( )zρ∆  using a reduction density of 2.645 g/cm3 given 
that (0)ρ =

ρ∆
∆ while the third column represents the maximal differential density 

contrasts  in each respective horizontal layer. The differences in column 4 are a 
measure of accuracy in the recovery of the apriori density contrasts with the upper layers 
mostly able to recover values within the limit of a geological and/or geophysical 
interpretation. 
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Figure 3-10: Results for a horizontal layer of depth range 0.400 ~ 0.800 km as (a) 
differential density contrasts with a contour interval of 0.003 g/cm3 and (b) position of the 
contact surfaces with a contour interval of 25.0 m 

Table 3-3: Differences between apriori and inversion analysis density contrasts. 

 
Layer Depth 

(km) 
Forward Model 

Density Contrasts, 
∆ρ(z) (g/cm3) 

Maximum Inversion 
Analysis Contrasts 

(g/cm3) 

Differences 
(g/cm3) 

 
0.000 0.000 0.000 0.000 

 
0.400 0.032 0.028 0.004 

 
0.800 0.042 0.045 -0.003 

 
1.200 0.042 0.038 0.004 

 
1.600 0.041 0.046 -0.005 

 
2.000 0.039 0.054 -0.015 

 
2.400 0.039 0.081 -0.042 

 
 
 

3.3.2   Possible errors in determination of density contrasts and contact 
surfaces positions 

 
       The prevalent depth-ranges given for intermediate horizontal layers in geophysical 
literature for differential density contrasts or contact surface positions sometimes ignores 
a fundamental mathematical tenet about rounding off. For example Bear et al., [1995] and 
Nagihara and Hall [2001] determine the density contrasts of the horizontal layers, giving 
the depth ranges in the form 1.4 ~ 1.9 km, 2.4 ~ 2.9 km etc. The horizontal layer heights 
do not explicitly state to what accuracy the heights are determined and effectively blurs 
the idea of errors in height measurements. These height errors do have an effect on the 
geological and/or geophysical interpretations due to their direct relationship with 
disturbing masses. In mathematical theory, rounding off values depends on the number 
decimal points needed and therefore the values of any given layer range if not explicitly 
stated might imply rounding off.   
 

In an effort to show the possible hypothetical changes or variation ranges in the 
heights of horizontal layers consider the Table 3.4 as a possible example of a horizontal 
intermediate layer with a height of range 1.4 ~ 1.9 km in the sub-surface or lower half-
space. In Table 3.4, the hypothetical maximum difference in the height of the horizontal 
layer of depth range 1.4 ~ 1.9 km are shown as the difference between m2 for lower layer 
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and m1 for the upper layer i.e., 1.944 – 1.349 = 0.595 km. Similarly, the hypothetical 
minimum difference is the difference between m1 for the lower layer and m2 of the upper 
layer i.e., 1.849 – 1.444 = 0.405 km. In terms of differential density contrasts these errors 
could significantly affect the geological and/or geophysical interpretations since the 
density contrasts have a physical meaning only in the explicit range as depicted in 
Section 2.4 of Chapter 2. This is especially serious as density differences if the 
neighbouring geologic materials varies and thus difficult to clearly delineate between 
them for observations obtained on the Earth surface. Hence, it is imperative to explicitly 
state the accuracy of the height measurements for a horizontal layer 
 

Table 3-4: Hypothetical height ranges for a sub-surface horizontal intermediate layer 

 
 Depth (km) Minimum possible 

value, m1 (km) 
Maximum possible 

value, m2 (km) 
 

H1 1.4 1.349 1.444 
 

H2 1.9 1.849 1.944 
 

∆H = H2 – H1 0.5 0.500 0.500 
 

 
 
 

D ifferentia l density 
in  a layer ∆ρ(x,y,z)

Effects of the
variations of the 
average depth 

of layer

Inaccurate height 
but constant

average layer
depth

Identical
observations 
top surfaces

Density of layer 
as surface 

covered by a 
m ass

Error effects on the density contrasts 
and/or contact surface position in layer

W hat is  the acceptable error lim its for a 
geological and/or geophysical interpretations?
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Figure 3-11: Flow diagram to show for the possible errors on heights on an intermediate 
horizontal layer problem. 

  
The possible height errors effects on a sub-surface horizontal layer have been 

developed from a combination of Fourier analysis techniques and the convolution 
theorem as outlined in Section 2.4 of Chapter 2. Figure 3.11 shows the different possible 
kinds of errors on height or density for the disturbing masses in a horizontal layer. Each 
horizontal layer had a height error introduced and the respective height errors effects on 
the differential density contrasts and positions of contact surfaces determined. 
Concurrently, the height error limits are investigated for meaningful geological and/or 
geophysical interpretations in an intermediate horizontal layer. The differential density 
contrasts and positions of contact surfaces are computed similar to those in Section 3.3.1 
using equations (2-5) and (2-6) in Section 2.3.1 and equations (2-16) and (2-18) in 
Section 2.3.2 of Chapter 2. In this case too the adopted gravity anomaly effect is from 
Section 3.2.5. 
 
 
3.3.2.1 Deviations due to inaccurate average depth of horizontal layer 
 

The position of the horizontal layer in the sub-surface could be given inaccurately 
without any alteration in the actual height of the horizontal layer, ∆ . The result could 
either be an upward or downwards shift as shown in Figure 3-12. Even though the shifts 
might be minimal, it is our interest to find out how significantly they alter or affect the 
determination of the disturbing masses in the horizontal layer depending on the actual 
thickness of layer and its location in the lower half-space. The disturbing masses are 
computed for a possible height error on the intermediate layer and the height error effects 
accordingly investigated. 

H

H∆ H∆
H∆

C o r r e c t  h e ig h t s  f o r  
t h e  h o r iz o n t a l  la y e r  

T o p  S u r f a c e  o f  t h e  h o r iz o n t a l  la y e r

U p w a r d  S h i f t s

D o w n w a r d  S h i f t s
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Figure 3-12: Diagram to depict the apparent shifts in a horizontal intermediate layer in a 
sub-surface with a height of the horizontal layer thickness, ∆ . H

 
  

In order to investigate the error effects, a pair of specific error values was 
arbitrarily chosen for a known lower half-space layer given in Table 3.5. The actual shift 
from the correct position without the alteration of the height of horizontal layer height is 
shown in the central part of Figure 3-12. The table sums the actual changes in the average 
depth, the error in the average height of a layer and the positions of the effective layer 
relative to the correct layer. Two arbitrary height errors were chosen as 5.0 m and –10.0 
m on a horizontal layer of height 0.750 km. 
 

Table 3-5: Possible height errors on a horizontal layer of thickness  km. 0.750H∆ =

 
 Correct height of 

horizontal layer (km) 
#1 – Inaccurate 

layer height (km) 
#2 – Inaccurate 

layer height (km) 
 

H1  0.250 0.255 0.240 
 

H2  1.000 1.005 0.990 
 

∆H = H2 – H1 0.750 0.750 0.750 
 

Mean H = 
(H2+H1)/2 

0.625 0.630 0.615 
 

Error dh in the 
mean H 

0.000 +0.005 -0.010 
 

Height position 
relationship 

 

 
- 

Mean H greater 
than correct mean 

value 
 

Mean H less than 
correct mean value 

 
 

In Section 2.4.1 of Chapter 2 the development by downward continuation of 
height error effects on the differential density contrasts and positions of the contact 
surfaces arising thereby have been shown wherefrom equations (2-39) and (2-40) are now 
utilized in the inversion analysis. The first case had a maximum error in differential 
density contrasts of 1.80 mg/cm3 and 65.0 cm in the position of the contact surface, while 
the second case had a maximum error effects of –3.50 mg/cm3 and -78.0 cm in the 
density contrasts and position of contact surface respectively. The resulting height error 
effects for the two possible errors on heights above are given in Figure 3.13 and Figure 
3.14 respectively 
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Figure 3-13: Error effects due to average height greater than correct height of layer for a 
range of 0.250 ~ 1.000 km as (a) differential density contrasts with a contour interval of 
0.150 mg/cm3 and (b) position of contact surfaces with a contour interval of 5.0 cm 
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Figure 3-14: Error effects due to average height less than correct height of layer for a 
range of 0.250 ~ 1.000 km as (a) differential density contrasts with a contour interval of 
0.250 mg/cm3 and (b) position of contact surfaces with a contour interval of 5.0 cm 
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3.3.2.2 Distortions on the density contrasts due to an assigned layer thickness 
 
        The distortion in the assigned layer thickness is also a source of error in the 
resulting disturbing masses for an intermediate horizontal layer of thickness ∆ . Two 
possible scenarios arise where the average height of the horizontal layer though constant 
has either (1) the height of layer ∆ being less than ∆ i.e., a compressed thickness 
effect of intermediate layer or (2) height of layer ∆ being greater than ∆ i.e., a 
stretched thickness effect of intermediate layer. Both cases are diagrammatically depicted 
in Figure 3.15 and a possible numerical rendering on heights in Table 3.6. 

H

H
1H H

2H

H∆ 2H∆

C o r r e c t  d e p t h s  
f o r  t h e  l a y e r

1H H∆ < ∆
2H H∆ > ∆

1H∆

T o p  S u r f a c e  o f  t h e  h o r iz o n t a l  la y e r

 
Figure 3-15: Diagram for the apparent sub-surface layer location due to errors on for an 
intermediate horizontal layer. 

 

Table 3-6: Distortions due to assigned layer thickness and/or assumed density. 

 
 Correct height of 

horizontal layer (km) 
#1 – Compressed 
layer height (km) 

#2 – Stretched 
layer height km) 

H1  0.250 0.255 0.240 
 

H2  1.000 0.995 1.010 
 

∆H = H2 – H1 
 

0.750 0.740 0.770 
 

Mean H = 
(H2+H1)/2 

0.625 0.625 0.625 
 

Factor α = 
∆H/Actual height 

1.000000 
 

0.986667 1.026667 
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The same possible errors on height as in Section 3.3.2.1 are applied whereby 

equations (2-51) and (2-52) in Section 2.4.2 show the development by downward 
continuation of the height errors and their effects on the disturbing masses. When the 
equations are adopted in the inversion analysis, the first case had a maximum error effect 
in differential density contrasts of 8.560 mg/cm3 and 78.0 cm in the position of the 
contact surface, while the second case has a maximum error effect of 8.847 mg/cm3 and 
75.0 cm on density contrasts and the position of the contact surfaces respectively. The 
error effects for the two above cases are shown in Figures 3.16 and Figure 3.17 
respectively.   
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Figure 3-16: Error effects for thickness of the layer less than correct thickness for a 
range of 0.250 ~ 1.000 km as (a) differential density contrasts with a contour interval of 
0.500 mg/cm3 and (b) position of contact surfaces with a contour interval of 5.0 cm 
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Figure 3-17: Error effects for the thickness of the layer greater than correct thickness for 
a range of 0.250 ~ 1.000 km as (a) differential density contrasts with a contour interval of 
0.500 mg/cm3 and (b) position of contact surfaces with a contour interval of 5.0 cm 

3.3.2.3 Density changes due to top surface being identical to the observation surfaces 
 
         The assigned layer thickness can be altered with the top surface being correctly 
given while the bottom surface is erroneous. In this case, the bottom surface has a height 
error and thus an error effect on the computed density contrasts in layer. This has two 
possible cases too such that (1) height of the layer ∆ is greater than ∆ i.e., a 
stretched intermediate layer effect or (2) the height of the layer ∆ is less than ∆ i.e., 
a compressed intermediate layer effect. The height errors for two cases have the top 
surfaces being identical but the bottom surfaces are erroneous as shown in Figure 3.18 
and the possible case values given in Table 3.7. 

2H H

1H H

H∆
2H∆

C o r r e c t  h e ig h t  
f o r  t h e  l a y e r1H H∆ > ∆ 2H H∆ < ∆

T o p  s u r f a c e  o f  t h e  h o r i z o n t a l  l a y e r

1H∆

Figure 3-18: Diagram showing the thickness variations in the sub-surface due on the 
horizontal layer. 

Table 3-7: Density changes for top surface identical to the observation surfaces. 

 
 Correct height of 

horizontal layer (km) 
#1 – Stretched layer 

height  (km) 
#2 – Compressed 
layer height (km) 

H1 0.250 0.250 0.250 
H2 1.000 1.010 0.995 

∆H = H2 – H1 0.750 0.760 0.745 
Mean H = 
(H2+H1)/2 

0.625 0.630 0.6225 

Relative Height 
position  

 
- 

Mean H greater than 
correct mean value 

Mean H less than 
correct mean value 
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Two possible errors on heights cases are chosen as +10.0 m and -5.0 m on the 
horizontal layer height of thickness 0.750 km. Equations (2-65) and (2-66) in Section 
2.4.3 shows the development by downward continuation of the height errors and their 
effects on the disturbing masses on an intermediate layer. When these equations are 
adopted in the inversion analysis, the first case has a maximum error in differential 
density contrasts of –7.374 mg/cm3 and –43.0 cm in the position of the contact surface, 
while the second case has a maximum error of 5.530 mg/cm3 and 75.0 cm on the density 
contrasts and the position of the contact surface respectively. The error effects resulting 
from the errors on thickness are shown in Figure 3.19 and Figure 3.20 respectively. 
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Figure 3-19: Error effects due to identical surfaces but thickness of layer greater than 
actual thickness for a range of 0.250 ~ 1.000 km as (a) differential density contrasts with 
a contour interval of 0.500 mg/cm3 and (b) position of contact surfaces with a contour 
interval of 5.0 cm. 
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Figure 3-20: Error effects due to identical surfaces but thickness of layer less than actual 
thickness for a range of 0.250 ~ 1.000 km as (a) differential density contrasts with a 
contour interval of 0.500 mg/cm3 and (b) position of contact surfaces with a contour 
interval of 2.5 cm 

3.3.2.4 Deviations in density due to a surface loaded with a mass 
 
       Sometimes the density contrasts can be approximated as a surface loaded with a mass 
and the actual density contrasts can then be computed. It can provide for the corrections 
or computations of the correct values for an intermediate horizontal layer especially with 
new geophysical data e.g. gravity or geology data.  
 

H∆ H∆ H∆

Correct density for the  
horizontal layer

Top Surface of the  horizontal layer

1 ( , , )x y hρ∆ ( , , )x y hρ∆ 2 ( , , )x y hρ∆

 

Figure 3-21: Diagram depicting the approximate density contrasts in the sub-surface 
besides the actual density or density contrasts in the sub-surface layer 

 
         This could is achieved by approximation of the attractive potential of a horizontal 
layer with a variable density by means of the attractive potential of a mass-loaded surface 
at the same average depth. The development by downward continuation of height error 
effects is given in Section 2.4.4 in Chapter 2 while the possible parameter changes are 
shown in Figure 3.21.  A possible error on height of 10.0 m on the intermediate 
horizontal layer of thickness 0.750 km is adopted for the investigation.  
 

From Section 2.4.4 of Chapter 2, equation (2-75) is adopted in the inversion 
analysis. A maximum error effect on differential density contrasts of 8.833 mg/cm3 and 
75.0 cm in the position of the contact surface were realized. The resulting error effects on 
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differential density contrasts and the position of the contact surfaces are shown in Figure 
3.22.  
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Figure 3-22: Error effects due to a surface covered with a mass for a range of 0.250 ~ 
1.000 km as (a) differential density contrasts with a contour interval of 0.500 mg/cm3 and 
(b) position of contact surfaces with a contour interval of 5.0 cm 

3.4 Error limits for a geological and/or geophysical interpretation 
 
        In the geological and/or geophysical interpretations the height error limits for 
height measurements for a horizontal layer are vital.  As long as the stated height limits 
do not exceed the accuracy of the geophysical data measuring instruments, it is very 
important to ensure the use of as accurate height measurements as possible. The height 
error limits are dependent on the accuracy of the differential density contrasts in the 
intermediate horizontal layer, which in turn depends of the rocks density at a particular 
depth. In the computation of the height error effects in Section 3.3 above, we similarly 
tested for the height error limits. Table 3.8 shows the height limits in errors on heights for 
our case synthetic dipping dike to a depth of about 1.000 km in the sub-surface. 
 

Table 3-8: Error limits for the geological and/or geophysical interpretations. 

 
 Effects of 

variations in 
average 
depth 

Inaccurate 
height but 

constant average 
depth 

Identical top 
layer 

surfaces 

Approximate 
density for a 

layer with 
mass 

 
Density contrasts 

(mg/cm3) 
 

 
0.50 

 
0.50 

 
0.50 

 
0.50 

Height error 
limits (cm) 

 

 
5.0 

 
2.0 

 
2.0 

 
2.0 

 
 
        The height error limits given in Table 3.8 are allowable on the height 
measurements for intermediate layer in the given range possible without effective 
alteration of the density contrasts and/or position of the contact surfaces. The meaningful 
interpretation depends on the ability to differentiate or delineate the densities of different 
rocks, which might become less distinct with increases in the depth. It is seldom, 
however, that the geophysicist must base his interpretation on gravity data alone. Using 
other data such as drilling logs, seismic data to reduce the ambiguity in the interpretation, 
narrows the range of uncertainty. The more the available data from other sources, the 
more restricted will the questions that the gravity information is called upon to answer 
and the more definite the answers that can be expected. 
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Chapter 4 
 

The essential quality of a proof is to compel belief. 
- Pierre de Fermat 

-  
“That which is well conceived can be expressed clearly  

And the words for saying it will come easily” 
- Nicolas Boileau, 1636 – 1711. 

 
And now I see with eye severe, the very pulse of the machine. 

- William Wordswork (She was a Phantom of Delight (1804)). 
 

 
4  A Case Study - Chubu District, Japan 
 
4.1  Physiography and Geology 

4.1.1 Physiography 
 
        In the case study, an investigation site located in the Central Ranges of Chubu 
District, Japan was chosen. The Central Ranges consist of the Hida, Akaishi and Kiso 
mountain ranges and are bounded by the Itoigawa-Shizuoka Tectonic Line (ISTL) to the 
east and the Atera fault to the southwest across which the regional Bouguer anomaly 
pattern changes sharply. The Hida, Akaishi and Kiso mountain ranges accompany the 
Matsumoto basin - the northern Fossa Magna and the Kofu basin - the southern Fossa 
Magna) and the Ina basin on their eastern part.  The Fossa Magna has a complex geologic 
history but it is presently a strongly folded zone forming the Matsumoto sedimentary 
basin northward and southward, the Fuji River Valley as a thick sedimentary trough 
[Huzita, 1980]. The effect of the lateral variation of density is difficult to evaluate. If for 
example, the Matsumoto sedimentary basin at relatively high altitudes of about 600 
meters had a density 10% smaller than the average, the use of the value 2.64 g/cm3 would 
have led to an overestimation of negative anomalies of this basin by an amount of 7.00 
mGals [Yamamoto et al., 1982]. 
  
        The Atera fault is a first-class active fault along which a narrow but very clear 
Bouguer low is observed that may be attributed to fault gouge material [Yamamoto et al., 
1982]. It marks the western margin of the Fossa Magna, which is known as the greatest 
depression in Central Honshu. The correlation of Bouguer anomaly with topography is 
strongly negative in the Hida Mountains, marginally in the Akaishi Mountains and 
significantly positive in the Kiso range, suggesting that the correlations becomes 
progressively negative with increasing massiveness of the mountain structure. The 
strongly negative Bouguer anomaly can be attributed to thick late Tertiary to Quaternary 
sediments.  
 

The Itoigawa-Shizuoka Tectonic Line (ISTL) - a major fault in Honshu extends 
from Itoigawa on the coast of Sea of Japan to Shizuoka on the Pacific Coast. In the 
northern ranges along ISTL, it is recognized that several faults trend from north to south. 
For the inversion analysis a wider encompassing region was chosen as given in Table 4.1. 
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The larger area provides for redundancy and enables for the regional computation for 
topographic loading and terrain corrections. The region in a regular grid given in Table 
4.1 covers an area of approximately of 15.0 km by 15.0 km on the Earth’s surface and it 
is generally flat rising at the edges to about 800 meters above Sea Level. On the other 
hand, the actual investigation site covers an area of 9.0 km by 9.0 km as shown in Table 
4.2 wholly encompassed in the wider region in Table 4.1. The investigation site is 
generally flat with an incline of about 1 in 500 especially towards the edges. The 
elevation heights as given in Table 4.1 and Table 4.2 show the relative topography 
prevalent in the regions. 
 

Table 4-1: Regional Location in the Chubu District - Japan. 

 
 Longitude 

(Deg.) 
Latitude 

(Deg.) 
Height above 
Sea Level (m) 

Bouguer 
Anomaly (mGals)

 
Minimum 137.830 36.265 500.378 -32.576 

 
Maximum 138.000 36.432 704.545 -18.475 

 
Difference 0.170 0.167 204.167 14.101 

 
Contour 
Intervals 

- - 10.0 1.0 

 

Table 4-2: Location of the Investigation Site in Chubu District – Japan. 

 
 Longitude 

(Deg.) 
Latitude 

(Deg.) 
Height above 
Sea Level (m) 

Residual Anomaly 
(mGals) 

 
Minimum 137.875 36.320 500.342 -5.425 

 
Maximum 137.975 36.420 702.808 8.175 

 
Difference 0.100 0.100 202.466 13.600 

 
Contour 
Intervals 

- - 10.0 0.5 

 

4.1.2 Geological and Tectonic Setting 
 
        Modern inversion techniques presume that geophysical data are inaccurate i.e., 
they have both measurement errors and noise; incomplete i.e., the relevant physical 
properties cannot be completely determined and yet redundant (and thus probably 
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inconsistent). Without redundancy, error estimates cannot be quantified and the 
separations of the signal become more difficult, if not impossible. In its broadest sense, 
noise is any information that obscures the signal i.e., the information that is useful for 
interpretation. Isolation of the signal is easiest when the data are redundant and 
experiments have been designed with this goal in mind. Geological application of 
geophysical results requires consideration of the target, that the technique is actually 
measuring and which results are conclusive and which strongly depends on interpretation, 
that is, the limitations.  
   
        Gravity is sensitive to the average density of the rocks while seismic properties 
are greatly influenced by the shape and abundance of the cracks and by pore fluids, 
although they also depend on the major constituents of the rock. In Nagano and the 
Matsumoto basins, alluvial and diluvial deposits are spread widely with the Tertiary 
sedimentary rocks are partly exposed in certain locations. The geological features 
naturally give rise to a fairly large contrasts or rock density between formations of the 
pre-Neogene and those of the Neogene and the Quaternary. Itoigawa-Shizuoka Tectonic 
Line (ISTL) is a geological boundary between the Pre-Tertiary unit to the west and the 
Neogene units to the East. The Pre-Tertiary basement deepens to the East. The northern 
segment of ISTL is an active thrust. The recurrence time of the Earthquake faulting is 
estimated as less than 1000 years from the trenching of the active segment in Matsumoto 
[Okumura et al., 1994]. 
 

Table 4-3: Densities of Rock Types in the Chubu District, Japan. 

Sources: * Hirokawa [1978],  + Telford, et al. [1990] and ++ Burger [1992] 
 

Geological Materials 
 

Density Ranges 
(g/cm3) 

Average Density 
(g/cm3) 

Rock Depths  
(km) 

 
Alluvial Deposits* 2.00 - 2.25 2.12 < 0.30 

Fluvial Deposits (5Ma)*  1.95 – 2.30 2.25 < 0.40 

Turbidites (Miocene)* 2.35 – 2.70 2.54 < 2.00 

Sedimentary Rocks*  
(Paleo-Mesozoic) 

2.30 – 2.70 2.60 1.70 - 5.00 

Igneous Rocks (Basalt)+ 2.70 – 3.30 2.99 < 2.50 

Metamorphic Rocks++ 2.60 – 3.10 2.74 - 

Igneous Rocks (Granite)+ 2.50 – 2.81 2.64 - 

Earth Crust* 3.27 ~ 3.27 > 5.00 
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Rock densities of the pre-Neogene are generally larger than those of the Neogene 
and the Quaternary formations and so high gravity anomalies of short wavelengths are 
coincident to pre-Neogene formations whereas low gravity anomalies to that of the 
Neogene and the Quaternary formations [Hagiwara, 1967]. The basins have combination 
of a wide variety of geological materials namely: - (1) quaternary sediments (2) tertiary 
sediments, (3) basal sediments (4) igneous rocks and/or metamorphic rocks, and (4) 
metamorphic rocks with ultra-basic rocks besides shallowly lying fluvial and alluvial 
deposits. Paleozoic and Mesozoic rocks are mainly distributed west of Itoigawa-Shizuoka 
Tectonic Line (ISTL). They are characterized by a strongly negative Bouguer anomaly 
that can be attributed to the thick Tertiary to Quaternary sediments. The anomaly reaches 
the maximum in the western periphery of each basin using an average Bouguer reduction 
density of 2.64 g/cm3 [Yamamoto et al., 1982].  Table 4.3 shows the common geological 
materials prevalent in the Central Ranges of Japan with the blank spaces are being to lack 
of the explicit depth ranges for the respective geological materials. 
 
 
4.2 Data types adopted in the Modeling 

4.2.1 Regional Topography  
 
        Geographical Survey Institute (GSI) situated in Tsukuba City, Ibaraki Prefecture 
– Japan prepared the Digital Terrain Elevation Data (DTED) for entire Japanese Islands. 
It is a raster source topographic database with a grid spacing of 1.5 by 2.5-arc seconds 
and translates to approximately 50 m by 50 m between the abutting points. The Geodetic 
Reference System used with an the Tokyo datum based on Bessel (1841) ellipsoid and 
origin at latitude 36° North and longitude 136° East on a polyconic projection. For any 
Digital Elevation Model (DEM) e.g., DTED, the differences in topographic detail depend 
on the size and positions of the details. Small artificial mounds and depressions may be 
present in localized areas, particularly where steep topography is adjacent to relatively 
low areas and hypsography was sparse. The locations of points in region are such that a 
larger area is possible as the topographic heights are for the centre of the grid and not the 
nodal locations.  
 
 Regular grid topographical data are well known to offer advantageous 
characteristics especially for the distant and intermediate zones surrounding the gravity 
stations. The situation is clearly dependent on the ruggedness of the topography and the 
accuracy specifications for the terrain effects [Blais and Ferland, 1984]. Terrain 
corrections for gravimetric measurements require topographical data of appropriate 
accuracy and density. The results rely strongly on the DEM’s and their accuracy depends 
most strongly on how well the DEM represents the terrain in the vicinity of the gravity 
station as well as how accurately the location of the gravity station is known. However 
when relief is great, corrections calculated for the innermost terrain can still be inaccurate 
even though the interpolated and actual station elevations are often due to errors in the 
gravity station location rather than to inaccuracies in the DEM. 
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Figure 4-1: Regional topography of Case Study Region in Chubu District with contour 
interval of 10.0 m.    

 
Figure 4-2: Topography of structural investigation site in Chubu District with a contour 
interval of 10.0 m. 
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4.2.2 Gravity Data 
 
        The gravity method being a part of applied geophysics has shown numerous 
advances in the data acquisition, processing and interpretation techniques to meet certain 
often-changing demands. In particular, improvements in gravity acquisition systems, 
aided by rapid computer technology, leads to the detection of weak signal gravity 
anomalies that are in the range of few micro-gals. This highly precise gravity data 
enables the detection of the sub-surface mass distributions, whose existence was not 
observable in the past. But, on the other hand, does demand high precision data 
processing and interpretation techniques. In practical work, it is not only the perturbation 
forces that make the measurement(s) and analysis of geophysical data complicated but 
also the precision of the data acquisition, processing and interpretation. 
  
        The gravity data used was mainly from a Geological Survey of Japan (GSJ) CD 
ROM released on 24th March 2000 and compiled from gravity data measurements of 
347,979 points on land and 691,766 points in the Ocean. Many institutions in Japan – 
both academic and private involved in the gravity, mining and geological explorations 
contributed the data. The absolute gravity data is based on the Japan Gravity 
Standardization Net 1975 (JGSN1975) which is referred to as the International Gravity 
Standardization Net 1971 (IGSN1971), while the normal gravity has been calculated 
according to the Geodetic Reference System 1980 (GRS1980).  
        
        Corrections for terrain effects are required for virtually all gravity measurements 
acquired in mountainous areas, as well for high-precision surveys, even in areas of low 
relief. An indicator of the reliability of the corrections is the difference between the 
actual and interpolated elevations of the gravity station where such differences are large 
the calculated correction is suspect. However, when relief is great, corrections calculated 
for the innermost terrain can still be inaccurate even though the interpolated and actual 
station elevations are often due to errors in the gravity station location rather than to 
inaccuracies in the DEM.   
 
4.2.2.1 Bouguer Anomaly 
  
        Gravity anomaly can be generally divided into two parts; one is characterized by 
the broad spatial variations reflecting the deep geological structure, which is supposed to 
reach the upper mantle of the Earth, and the other is due to the crustal geological features 
[Hagiwara, 1967]. A good analysis should be able to distinguish these two types of 
anomaly so that they can be examined one by one in relation to the topographical 
undulations and geological features [Hagiwara, 1967]. The complete Bouguer anomaly 
reflects the lateral variation of density at depth and therefore the density chosen for the 
final Bouguer reduction is the one that probably produces the gravity profiles that 
illustrates the least correlations with topography [Burger, 1992]. The Bouguer reduction 
density is an important factor in the determination of the sub-surface structures and the 
size of the area affects which reduction density value is adopted.  
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The choice of final reduction density is to minimize the correlation of the gravity 
with topography because the search for gravity anomalies arises from these sub-surface 
density variations. Of course, sampling rocks and sediments and determining densities in 
the laboratory determine the best reduction values. In most cases however surveys cover 
so large an area that such sampling is not practical or exposures are not sufficiently 
numerous to permit reliable and representative samples to be gathered.  

  
Figure 4-3: Complete Bouguer anomaly for the Case Study area with a contour interval of 
1.0 mGals. 

 
Figure 4-4: Complete Bouguer anomaly of the structural investigation site with a contour 
interval of 1.0 mGals. 
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Many gravity surveys select a density of 2.67 g/cm3 for the Bouguer reduction, an 
important factor in the determination of the sub-surface structures and the size of the area 
affects which reduction density value is adopted. This enables the values to be combined 
with other surveys for production of regional maps but may not be suitable for some 
purposes. A technique after works by Nozaki [1981] that utilizes the DTED provided by 
GSI was used in the computations of the terrain corrections.  

 
In the computations, the complete Bouguer anomaly was calculated using a 

topographic or reduction density of 2.64 g/cm3 and the terrain corrections were applied 
to a distance of about 25 km around the gravity station. The adopted average topographic 
density was 2.64 g/cm3 after works by Yamamoto et al., [1982]. The value was obtained 
using a newly proposed least squares method that incorporates the topography that covers 
an extensive area of 40,000 km2 with elevation heights ranging from 0 to 3000 m for 
which the Earth’s sphericity may not be ignored [Hagiwara, 1975]. 
 
 
4.2.2.2 Residual Anomaly 
 
        It has long been recognized that the largest regional gravity response comes from 
the gravity effects of both topography and the crustal structures [Chapin, 1996]. In most 
areas where gravity surveys are carried out there are deep-seated structural features 
causing variations in gravity at the surface, which are much larger in areal extent than the 
structures ordinarily of interest. A major step in the analysis of the gravity data is the 
process of isolating observed anomaly patterns into regional and residual components. 
The gravity anomaly is often the sum of the overlapping gravitational effects of two or 
more separate geologic structures of varying dimensions and depths and thus an objective 
separation criterion in not possible.  
 

These effects can be hundreds of milligals. Since the Bouguer anomaly contains 
all the density deviations from an ideal Earth, residualizing gravity data to take out the 
deeper anomalous effects has been a major problem for a long time. In Hagiwara [1967] 
it is suggested that frequency analysis technique would be one of the best ways of 
separating the broad variations from local anomalies. In recent years, the application of 
digital filters to achieve this regional-residual separation has become increasingly 
popular among geophysicists. A high-pass filter is useful for emphasizing anomalies of 
short wavelength while the upper mantle structure could be effective by making use of a 
low pass-filter [Hagiwara, 1967].  

 
However, the effectiveness of these mathematically derived maps from the 

viewpoint of quantitative gravity modeling is still debatable [Gupta and Ramani, 1980]. 
All residual maps generally follow the outlines of the geologic units and are probably 
equally useful for studying anomaly shapes and trends sometimes with slight 
discrepancies [Gupta and Ramani, 1980]. It is important that the residual anomaly 
contains the effects of the local and near-surface masses and be possible to explain the 
most highs and lows by the observed geology besides the effects of deep crustal features.  
    

 68



        The separation of the Bouguer gravity field into its regional and residual 
components is always ambiguous and rather troublesome. There have been many 
approaches to solve this problem (e.g. Nettleton [1954]; Skeels [1967]; Fuller, [1967]) 
and they all have relied on the method of subtracting a long-wavelength mathematical 
surface from the data. In general Bouguer anomalies are smooth, but they contain a trend 
depending on the horizontal position of the measuring point. A linear trend must be 
removed from the data because its presence distorts the power estimate at all frequencies 
particularly near the zero frequency [Kanasewich, 1990; Meyer, 1974]. Assuming that the 
anomaly is given as ∆  can be split into two jointly un-correlated parts, a horizontal 
trend AX and the residual  (cf. Sunkel and Kraiger, 1993): 

g
rg∆

 
 

rg AX g∆ = +∆                                                (4-1) 
 
 
        Now the horizontal trend must be expressed by a suitable function. In this case a 
multivariate polynomial of degree k  has to be chosen as trend function that, in the plane, 
has the following form: 
 

2
0 1 2 3 4 ... k

nAX a a x a y a x a xy a y= + + + + + +                            (4-2) 
 
 
The coefficients a  are determined by least squares regression k denotes the degree of the 
polynomial and ( ,  are the coordinates of the data points. The reduction due to a 
horizontal trend is necessary because least-squares prediction works best with quantities 
that contain no symmetrical part [Moritz, 1980, p. 76].  The residuals ∆ satisfy this 
assumption much better than the gravity anomalies, ∆ . In general, polynomials 
equations higher than fourth degree are incapable of algebraic solution in terms of a finite 
number of additions, subtractions, multiplications, divisions and root extractions as 
demonstrated by Abel (i.e., Abel’s impossibility theorem) and also shown by Ruffini in 
1813 [Wells, 1986, p. 59]. 

i

)x y

rg
g

  
        For the case study, the complete Bouguer anomaly was de-trended i.e. removal of 
the trend by utilizing polynomial functions to the fourth degree for any degree greater 
than four becomes unsolvable. Optimum filters are designed to separate the components 
or to enhance or suppress specific wavelengths, which correspond to certain geologic 
features. The filters are designed from power spectrum particularly unique to the set of 
data after the separation of the components has been determined. Therefore, the resultant 
values were filtered to obtain the residual anomaly for both the regional location and the 
investigation site and are shown in Figure 4.5 and Figure 4.6 respectively. In both de-
trending and filtering we utilized GMT software prepared by Wessel and Smith [1995]. 
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Figure 4-5: Residual anomaly of Case Study area with a contour interval of 0.50 mGals. 

 
Figure 4-6: Residual anomaly of structural investigation site of area approximately 9.0 
km by 9.0 km with a contour interval of 0.50 mGals. 
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4.3 Inversion Analysis  
 
The gravity inverse problem is an ill-posed problem in the sense of Hadamard 

[1902] because its solution is neither unique nor stable. The non-uniqueness of the 
inverse problem increases rapidly for bodies with in-homogenous density and rapidly 
becomes unmanageable. Generally, geophysics provides only indirect clues to the 
presence of economically useful deposits. For a geophysical method to be useful, 
therefore, the measured physical property must be able to be interpreted in terms of 
geology. Such interpretation is not always straightforward because different methods 
sample different components of rocks, that is, the physical property measured by a 
geophysical method may indiscriminately sample all or only limited, constituents of a 
rock.  
  
        In geophysics this is primarily because one cannot afford to model the complexity 
of the Earth. Even if this were possible, it might not be worth the effort given the 
instrument’s resolution and the noise level in the data. Even in the absence of 
measurement and modeling errors, the forward operator might not be invertible and the 
set of models that predict the data equally well may be quite large [Scales and Tenorio, 
2001]. This in itself is not a problem; the problem is when these equally predicting 
models yield wildly different values for the model functional one wants to estimate. 
Many geophysical formulas are however homologous – that is, the structure of the 
formulae are identical and one equation can be obtained from the other by renaming the 
variables. 

Vertical deviations from  
the horizontal, zj ≠ 0.0

0h H=

0h H H= + ∆

H∆

0h =

Density  Contrasts
• Inversion  Analysis, ∆ρ(x,y,z)

( , , )Q x y h

Figure 4-7: Model of the disturbing masses for a case where the deviations from the 
horizontal level are not equal to zero 
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4.3.1 Density contrasts and contact surfaces positions in an intermediate layer 
 

r 
 the sub-surface has a physical meaning only at H . In the actual 

f 

n of the 
ifferential density contrasts and positions of the contact surfaces in a series of horizontal 

        The differential density contrast obtained in the sub-surface for a horizontal laye
in 0 0

field, observations of rugged terrain (topography), the deviations from the vertical are not 
zero i.e. 0.0jz ≠ . Figure 4.7 shows the diagram the vertical 
deviations fr he horizontal level position and the horizontal layer. The vertical 
deviations be incorporated in the inversion analysis unlike the inversion analysis 
for the synthetic model. The vertical deviations are only values above horizontal level 
taken as 0h = . In the test site the maximum vertical deviation was 0.200 km.  
 
        Adopting the residual anomaly in Section 4.2.2.2, the computatio

H h H< < +∆

matic relationship o
om t

 have to 

d
layers with different thickness in the sub-surface proceeds as in Figure 4.8. It helps 
determine the depth-dependent density contrasts ( , , )x y zρ∆

igure

 from the residual anomaly 
by inversion analysis. Equations (2-5) and (2-6) in Sections 2.3.1 and equation (2-16) and 
(2-18) in Section 2.3.2 of Chapter 2 do contain the relevant equations.  The computation 
proceeds similar to the modeling in Section 3.3.1 of Chapter 3 for the layer disturbing 
masses. The computation of differential density contrasts and the position of the contact 
surfaces is due to their direct relationship with disturbing masses in each of the series of 
intermediate horizontal layers. 

 
 

Residual Anom aly

Inversion Analysis
•Ortho-norm alize (Savinsky, 1967)

•Regularize (T ikhonov &  Arsen in, 1974)
•Solution (Savinsky, 1965; 1985)

Density  Contrasts
{Layer depths &  δ∆ρ(x,y,z)}

{Positions of Contact Surface}

Com plete Bouguer Anom aly
{De-trending  and  Filtering}
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F  4-8: Flow diagram to determine of the differential density contrasts and position 
f the contact surface in a horizontal layer. o



         The inversion analysis for the differential density contrasts and position of contact 
surfaces for a sub-surface horizontal layer of range 0.350 ~ 0.650 km are shown in Figure 
4.9 and Figure 4.10 respectively. Similar inversion analysis results for a series of 
horizontal layers of similar heights i.e., each with a layer height of thickness 0.300 km 
was performed and the summary is given in Table 4.4.  

 
Figure 4-9: Results for a horizontal layer of range 0.350 ~ 0.650 km for differential 
density contrasts with a contour interval of 0.0025 g/cm3. 

rposes (1) due to the direct 
elationship with the maximal differential density contrasts in the layer, it checks the 
aximu

 in 

The density or density contrasts of the sub-surface could then be 
btaine

 
The position of contact surfaces serve two pu

r
m m height of contact surface which must either be equal or less the height of 
horizontal layer H∆  and (2) determines the actual position of the contact surfaces in the 
same horizontal layer. Table 4.4 gives the differential density contrasts for possible sub-
surface structure the investigation site. The inversion analysis was performed to a 
depth of 1.60 km. 
 

Table 4.4 shows the maximum density contrasts for a possible structure in our 
nvestigation site. i

o d adding to the density or density contrast on the Earth surface to the differences 
between the subsequent intermediate horizontal layers. The actual location of the 
disturbing masses could be obtained by stacking together the different layers for the 
entire lower half-space. 
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Figure 4-10: Results for a horizontal layer range 0.350 ~ 0.650 km for position of the 
contact surfaces with a contour interval of 10.0 m. 

Table

 

 4-4: Differential Density Contrasts for Layers in Investigation Site. 

 
Laye

Range (km) Layer height (km) 
sity 

Contrasts (g/cm3) 
r Horizontal Layer Maximum Maximum Den

 
0.050 ~ 0.350 0.300 0.0800 

 
2 
 

0.350 ~ 0.650 0.300 0.0910 

3 
 

0.650 ~ 0.950 0.300 0.2012 

4 
 

0.950 ~ 1.250 0.300 0.3585 

5 
 

1.250 ~ 1.550 0.300 0.4253 

1 
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4.3.2 Errors on differential density contrasts and contact surfaces positions 

        In Section 3.2.2 of Chapter 3 we showed the hypothetical changes or variation 
 We 

roceeded there to investigate the height error effects on synthetic gravity anomaly effect 

se which needs actual layer density contrast that is not available presently. In all 
e three cases, each intermediate horizontal layer had a height error introduced and the 

respect

 

ranges in the heights of horizontal intermediate layers as depicted in Table 3.4.
p
of dipping dike in Sections 3.3.2.1, 3.3.2.2, 3.3.2.3 and 3.3.2.4. Here for the actual 
gravity anomaly, investigations on three different kinds of height errors on the 
differential density contrasts and position of the contact surfaces are as shown Figure 
4.11.   
 

We proceed as in Section 3.2.2 of Chapter 3 except for a surface loaded with a 
mass ca
th

ive height error effects on the differential density contrasts and positions of 
contact surfaces determined for the actual geophysical data. Concurrently, the height 
error limits were investigated for meaningful geological and/or geophysical 
interpretations in an intermediate horizontal layer based on the geophysical data of the 
Chubu District – Japan.  
 

 

Figure 4-11: Flow diagram for the determination of height error effects at the 
nvestigation Site in Chubu District – Japan. 

Effects of the
variations of the 
average depth 

of layer

Inaccurate height 
but constant

average layer
depth

Identical
observations 
top surfaces

Error effects on the density contrasts 
and/or contact surface position in layer

W hat is the acceptable error lim its for a 
geological and/or geophysical interpretations?

Differential Density Contrasts
{Layer  depths, ∆ρ(x,y,z)}

I
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4.3.2.1 Deviations due to inaccurate average depth of horizontal layer 

iven inaccurately 
ithout any change in average height of the intermediate horizontal layer, . This 

Table

 
        The position of the horizontal layer in the sub-surface could be g
w H∆
could either be a shift either upwards or downwards as depicted by Figure 3.11 in Section 
3.3.2.1. Even though the shifts might be minimal but their effects might significantly alter 
the resultant differential density contrasts and the position of the contact surfaces in an 
intermediate horizontal layer as was shown in Section 3.2.2 of Chapter 3. In the present 
case as shown in Table 4.5, we vary the horizontal layer heights i.e., a case one with an 
error of +5.00 m and case two as –10.0 m respectively on an intermediate horizontal layer 
of height 0.300H∆ = km.  
 

 4-5: Error on heights on horizontal layer of km. 

 
horizontal layer (km) 

ate 
layer height (km)  

#2 – Inaccurate 
layer height (km) 

0.300H∆ =
 

Correct height of #1 – Inaccur

  
0.250 0.255 0.240 

 
H2  0.550 0.555 0.540 

 
 H2 – 0.300 0.300 0.300 

 
Mean H = 
(H2+H1)/2 

0.400 0.405 0.390 

mean H 
0.000 0.005 -0.010 

Height position 
relationship - 

Mean H greater than 
correct mean value 

Mean H less than 
correct mean value 

 

 
     

H1  

∆H =  H1 

Error dh in the 

    
 
Equations (2-39) and (2-40) in Section 2.4.1 in Chapter 2 give the height error 

effects in the differential density contrasts and positions of the contact surfaces arising 
thereby are utilized in a pattern similar to synthetic modeling in Section 3.3.2.1 of 
Chapter 3. From the inversion analysis, the first case has a maximum error effects in 
differential density contrasts of 9.604 mg/cm3 and 14.5 cm in the position of the contact 
surface, while the second case has a maximum error in differential density contrasts of –
8.92 mg/cm3 and -13.6 cm in the position of the contact surface. The height error effects 
for the two cases are shown in Figure 4.12 and Figure 4.13 respectively.   
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Figure 4-12: Error effects due to average height greater than correct height of layer for a 
range of 0.350 ~ 0.650 km as (a) differential density contrasts with a contour interval of 
0.50 mg/cm3 and (b) position of contact surfaces with a contour interval of 1.50 cm. 
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Figure 4-13: Error effects due to average height less than correct height of layer for a 
range of 0.350 ~ 0.650 km as (a) differential density contrasts with a contour interval of 
0.50 mg/cm3 and (b) position of contact surfaces with a contour interval of 1.50 cm. 
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4.3.2.2 Distortions due to an assigned layer thickness and/or assumed layer density 
 
        The distortion in the assigned layer thickness is also a source of error in the 
computed differential density contrasts in the horizontal layer as was shown in Section 
3.2.2.2 of Chapter 3 using synthetic gravity anomaly. Two specific height error cases 
where the average height of the horizontal layer though remaining constant has either (1) 
the height of the layer ∆ being less than ∆ i.e., a compressed intermediate layer 
effect or (2) height of the layer ∆ being greater than ∆ i.e., a stretched intermediate 
layer effect are considered. Figure 3.14 in Section 3.3.2.2 in Chapter 3 diagrammatically 
depicts the two cases and possible height errors for the case study are given in Table 4.6. 
In this case, we vary the average height of intermediate horizontal layer i.e., a case 1 with 
an error of -5.0 m and case 2 as +10.0 m on the lower and upper parts of the layer of 
height ∆  km as shown in Table 4.6.  

1H H

2H H

0.300H =
        
         Equations (2-51) and (2-52 in Section 2.4.2 on the height error effects for the 
differential density contrasts and positions of the contact surfaces arising thereby are 
utilized in a pattern similar to synthetic data modeling in Section 3.3.2.2 of Chapter 3. 
The determination of the disturbing masses, the case 1 has a maximum error effect in 
differential density contrasts of 11.53 mg/cm3 and 15.5 cm in the position of the contact 
surface, while the case 2 has a maximum error of 11.34 mg/cm3 and 13.3 cm in the 
position of the contact surface. The height error effects arising from the two cases for an 
intermediate horizontal layer of height ∆ km are shown in Figure 4.14 and 
Figure 4.15 respectively 

0.300H =

 

Table 4-6: Distortions due to assigned layer thickness and/or assumed density 

 
 Correct height of 

horizontal layer (km) 
#1 – Compressed 
layer height (km) 

#2 – Stretched 
layer height (km)  

 
H1  0.250 0.255 

 
0.240 

H2  0.550 0.545 
 

0.560 

∆H = H2 – H1 
 

0.300 0.290 0.320 

Mean H = 
(H2+H1)/2 

0.400 0.400 0.400 

Value of factor α = 
∆H/Actual height 

 
1.000000 

 
0.966667 

 
1.066667 
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Figure 4-14: Error effects for the thickness of the layer less than correct thickness for a 
range of 0.350 ~ 0.650 km as (a) differential density contrasts with a contour interval of 
1.00 mg/cm3 and (b) position of contact surfaces with a contour interval of 1.50 cm. 
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Figure 4-15: Error effects for the thickness of the layer greater than correct thickness for 
a range of 0.350 ~ 0.650 km as (a) differential density contrasts with a contour interval of 
1.00 mg/cm3 and (b) position of contact surfaces with a contour interval of 1.50 cm. 
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4.3.2.3 Density changes due to the top surface identical to observation surfaces 
 
        The assigned layer thickness can be altered such that the top surfaces though 
being identical, the bottom surfaces have a height error. As has been established in 
Chapter 3, two possible error cases where the top surface though identical i.e., top surface 
of layer not erroneous but the bottom surfaces are in error are depicted in Figure 3.17 of 
Section 3.3.2.3 and the test values as shown in Table 4.7. The two cases are such that (1) 
height of intermediate layer ∆ is greater than ∆  i.e., a stretched intermediate layer 
effect and (2) the height of layer ∆ is less than ∆ i.e., a compressed intermediate 
layer effect. We have demonstrated by inversion analysis the height error effects of such 
an alteration of intermediate horizontal layer in Chapter 3, Section 3.3.2.3 using synthetic 
gravity anomaly and follow the same pattern to investigate height error effects on this 
actual field geophysical data. 

2H H

1H H

 

Table 4-7: Density changes due to top surface being identical to observation surfaces 

 
 Correct height of 

horizontal layer (km) 
#1 – Stretched 

layer height (km)  
#2 – Compressed 
layer height (km)  

 
H1 0.250 0.250 

 
0.250 

H2 0.550 0.560 
 

0.540 

∆H = H2 – H1 
 

0.300 0.310 0.290 

Mean H = 
(H2+H1)/2 

0.400 0.405 0.395 

Height position 
relationship 

 

 
- 

Mean H greater than 
correct mean value 

Mean H less than 
correct mean value 

 
    
        Two possible cases are (1) height error of +10.0 m and (2) height error of -10.0 m 
on the horizontal intermediate layer of thickness km. Equations (2-65) and 
(2-66) in Section 2.4.3 of Chapter 2 are adopted for the computations. The first case had 
a maximum error effect on differential density contrasts of –13.05 mg/cm

0.300H∆ =

3 and 9.6 cm in 
the position of the contact surface, while the second case had a maximum error effect of 
13.25 mg/cm3 on the differential density contrasts and 16.8 cm in the position of the 
contact surface. The height error effects for the two cases are shown in Figure 4.16 and 
Figure 4.17 corresponding to case 1 and case 2 respectively.   
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Figure 4-16: Error effects due to identical surfaces but thickness of layer greater than 
actual thickness for range of 0.350 ~ 0.650 km as (a) differential density contrasts with a 
contour interval of 1.00 mg/cm3 and (b) position of contact surfaces with a contour 
interval of 1.00 cm. 
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Figure 4-17: Error effect due to identical surfaces but thickness of layer less than actual 
thickness for range of 0.350 ~ 0.650 km as (a) differential density contrasts with a 
contour interval of 1.00 mg/cm3 and (b) position of contact surfaces with a contour 
interval of 1.00 cm. 
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4.4 Height error limits for geological and/or geophysical interpretations 
 
         In the computation of the height error effects in Section 4.2 above, we similarly as 
in Chapter 3 for the synthetic gravity anomaly computed the height error limits for each 
type of alteration of the horizontal intermediate layer. Table 4.8 shows the error limits for 
the height errors on the three error types investigated i.e., (1) effects of the variations in 
average depth of horizontal intermediate layer, (2) inaccurate layer heights but constant 
average depth and (3) use of identical top layer though the bottom surface is erroneous. 
These error limits for a horizontal intermediate layer of height ∆ km i.e., 
Table 4.8 are due to a depth of about 0.600 km from the Earth surface location. These 
values are solely dependent on the depth in sub-surface and the density contrasts or 
disturbing masses and might vary from one location to another. 

0.300H =

 

Table 4-8: Error limits for a geological and/or geophysical interpretations. 

 
 Effects of 

variations in 
average depth 

Inaccurate height 
but constant 

average depth 
 

Identical top layer 
surfaces 

Density contrasts 
(mg/cm3) 

 

 
1.0 

 
1.0 

 
1.0 

Maximum height 
error (cm) 

 

 
3.0 

 
1.0 

 
1.0 

 
 
         For the inversion analysis in an area with no independent information on sub-
surface geology, it is seldom possible to translate gravity data into reliable indications of 
structure. The more the available data from other sources, the more restricted will be the 
questions that gravity information is called upon to answer and the more the definite 
answers that can be expected. It is important for all who use gravity data like geologists 
and geophysicists to realize that interpretation in not a clear-cut process, which can be 
relied on for unique solution but instead subject to numerous limitations, which decrease 
as the independent control increases. Sometimes substantial overlap between densities of 
different rocks types would complicate the interpretations. 
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Chapter 5 

 
 

What one might see as a job well done; is just the start for a true professional.  
- Scientific Lore. 

 
Originally humans were ignorant and yet they had an internal model of the world. 

 In the course of time, this model has been updated many times, following the development  
Of new experimental possibilities or the development of their intellect.  

– Albert Tarantola, Paris 1986. 
 

5 Summary and Conclusions 
 
         In summary, Chapter 3 has demonstrated the quantitative determination of the 
depth-dependent (variable) density contrasts in the lower half-space from inversion 
analysis modeling. The depth-dependent density contrasts forward model ( )zρ∆  was 
computed apriori for a series of intermediate horizontal layers with varying heights and 
at different depths though results adopt a single layer thickness for all of them. It has 
been shown that from a sub-surface forward model with apriori depth-dependent density 
contrasts, it is possible to determine or recover the differential density 
contrasts ( , , )x y hρ∆  changes with respect to depth. The same heights were utilized in the 
inversion analysis to determine if it is possible to recover the maximum values i.e., 
quantities from the forward model. The maximum values or quantities were chosen per 
each intermediate layer since the maximum gravity anomaly effect was maintained at 
either central or shifted locations. Each maximum value gives the highest possible value 
of density contrasts for each intermediate layer as per the gravity anomaly effect of the 
dipping dike. Similar inversion analysis was later applied to an investigation site in 
Chubu District, Japan as a real case study in Chapter 4. 
 
        Table 3.3 shows the maximum inversion differential density contrasts, where 
column 3 can be compared to the apriori density contrasts in column 2. The differences 
between the forward model density contrasts δ ρ  and inversion analysis density 
contrasts δ ρ are in column 4. Thus, for a series of horizontal intermediate layers, 
it highlights the accuracy of determination of disturbing masses. The differences are less 
than 5.0 mg/cm

( )z∆
( , , )x y h∆

0

3 up to a depth of 2.00 km for the horizontal layers of 0.400 km thickness. 
The differences increase gradually after a depth of 2.00 km in the sub-surface. One 
possibility for the increase is due to use of greater point-to-point separation distance with 
increasing depth. It effectively smoothens the effective gravity anomaly effect as pointed 
out in Savinsky [1967], i.e., set of inversion results become poorly defined at increasing 
depths  due the influence of the accumulated errors or smoothing of the gravity 
anomaly effect with increase in the point-to-point separations. These accumulated errors 
are causes for the need for the regularization techniques applied in the inversion analysis 
[Tikhonov and Arsenin, 1974; Koch, 1990]. Results of the investigation site for a 
possible sub-surface structure in Chubu District are depicted in column 4 of Table 4.4 
with maximum density contrasts for a series of intermediate horizontal layers. 

H
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         In Chapter 3 we further demonstrate the height error effects on the density 
contrasts for an intermediate horizontal layer due to the height errors or alteration of the 
thickness. In this regard we considered four cases namely (1) deviations due to an 
inaccurate average depth of horizontal layer, (2) distortions due to assigned layer 
thickness or assumed density, (3) top surface being identical to the observations surfaces 
and (4) layer approximated with a surface covered with a mass. In case 1, a height error 
of +5 m or –10 m had error effects in density contrasts of 1.80 and -3.50 mg/cm3 for a 
layer height of 0.750 km while case 2 had 8.56 and 8.85, case 3 had -7.37 and 5.53 
respectively. The height error effect in density contrasts due to height error of +5 m in 
case 4 as 8.83 mg/cm3. From the results, it implies in case 1 that minimal errors in the 
assigned average depth of a layer create only slight changes in the variable density 
compared to cases 2, 3 and 4 respectively. Thus, any shift of the horizontal intermediate 
layer without alteration of the layer height, ∆ as in case 1, has only slight changes on 
the resulting density contrasts compared to cases 2, 3 and 4. Therefore as long as the 
layer thickness is maintained the error effects due to small height changes are minimal. 

H

 
         Similar results are reflected in the height error effects on the contact surfaces 
positions too. In case 1, a height error of +5 m or –10 m had height error effects in 
position of contact surfaces as 65.0 and –78.0 cm for a layer height of 0.750 km while 
case 2 had 78.0 and 75.0 cm, case 3 had –43.0 and 75.0 cm respectively. The error in 
density contrasts due to height error of +5 m in case 4 as 75.0 cm. The results imply that 
the effect of variation of the height of horizontal layer considerably affects the position of 
the contact surface and depends the position of horizontal layer and quantity of the 
disturbing masses. The height error effects on both differential density contrasts and 
positions of contact surfaces implies that a relationship exists between the true and the 
incorrect (distorted) density values such as when the error in the assigned depth of a 
layer is established, the exact densities and/or density contrasts can be obtained from the 
distorted density values.  
 

In Table 3.8 in Chapter 3 the height error limits and their effects for an 
intermediate layer of height 0.750 km are given. These are the values beyond which any 
accuracy in height measurements does not have an effect in the geological and/or 
geophysical interpretation of the sub-surface density or localized structures. Chapter 4 
has results for a investigation site in Chubu District - Japan, for cases 1, 2 and 3 in an 
intermediate horizontal layer of height ∆ km that corroborate quite well with 
those from in Chapter 3 on synthetic gravity anomaly effects. In case 1, a height error of 
+5 m and –10 m had height error effects in density contrasts of 9.60 and –8.92 mg/cm

0.300H =

3 
for a layer height of 0.300 km while case 2 had 11.53 and 11.34, case 3 had –13.05 and 
13.25 respectively. On the hand, in case 1, a height error of +5 m or –10 m had height 
error effects in position of contact surfaces of 14.5 and –13.60 cm for a layer height of 
0.300 km while case 2 had 15.50 and 13.30 cm, case 3 had 9.6.0 and -16.80 cm 
respectively 

 
        When combined the four cases developed in Sections 2.3.1, 2.3.3, 2.3.3 and 2.3.4 
of Chapter 2 for the relations between the distorted and the exact values of the variable 
thickness (height of intermediate layer) about the inaccuracies in the assigned 
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intermediate layer thickness and bedding values demonstrate the corrections of the 
possible error effects. In terms of differential density contrasts these height errors 
significantly affect the geological and/or geophysical interpretations since the density 
contrasts have a physical meaning only in the explicit range as depicted in Section 2.4 of 
Chapter 2. This is especially serious as density differences in the neighbouring geologic 
materials vary and it becomes difficult to clearly delineate between them. It has also been 
shown in Section 3.3.3 of Chapter 3 for synthetic modeling and Section 4.3 in Chapter 4 
in the real case study the maximum height error limits needed in the geophysical and/or 
geological interpretation for a horizontal intermediate layer..  
 
          The determination of the disturbing masses in a horizontal layer as depicted in the 
above computations is also an indication of the recovery of the causative structure. This 
was shown by the shift in the sub-surface of the location of the disturbing masses as had 
been proposed in the deliberate shift by 5.00 km Eastwards of the gravity anomaly effect 
of the synthetic dipping dike. The actual location of the disturbing masses is made 
possible by stacking together horizontal layers in the lower half-space. The operations as 
demonstrated in both synthetic modeling and actual case studies have a definite physical 
meaning such that for unchanged gravitational anomaly these effective distortions in 
intermediate layer implies certain density variations. These relations provide for 
corrections to the height error effects by means of inversion downward continuation 
analysis and are particularly valuable when the results are reviewed on the basis of new 
data on the geology of a particular region. The revised density variations are thus useful 
in the improving for a given gravity anomaly the geological and/or geological 
interpretations of the sub-surface.  
 
        In conclusion in the present study, the determination of apriori depth-dependent 
density contrasts and position of the contact surfaces within an intermediate horizontal 
layer has been quantitatively demonstrated. Closely related to the disturbing masses in an 
intermediate horizontal layer, the recovery of the actual location of the causative 
structure in the sub-surface has been demonstrated too. Further, the possible height 
errors and the height error effects arising there from have been investigated and conclude 
that it is vital to explicitly state the height of the intermediate horizontal layer since the 
physical meaning of the determined disturbing masses holds only within the layer. The 
explicit height error limits are useful for a meaningful geological and/or geophysical 
interpretation the geological materials (i.e., densities) at a particular sub-surface depth. 
Therefore, it is imperative, if possible to state and adopt in the computations layer heights 
to the either centimeters level accuracy or accuracy of height measuring instrument(s). 
Finally, the determination of disturbing masses is more effective in microgravimetry 
studies and/or localized structures without the effects long-wavelength anomalies and a 
more accurate interpretation is dependent on abundance of the geological information. In 
order to obtain a better understanding of the subsurface structure, it is necessary to 
incorporate other geophysical and geological constraints such as seismic survey data and 
information from drill holes. 
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